Mutation analysis of *CHCHD10* in neurodegenerative diseases, including Parkinson's disease

Ekaterina Rogaeva

Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto

Faculty of Medicine, Neurology Division

Objective is to update on recent genetic findings related to CHCHD10 & CHCHD2


International Conference on Parkinson's disease and Movement disorder Frankfurt, Germany, Aug 11-13 2015

CHCHD10 is novel ALS/FTD gene

doi:10.1093/brain/awu138

Brain 2014: 137; 2329–2345

2329

A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement

Sylvie Bannwarth, 1,2,* Samira Ait-El-Mkadem, 1,2,* Annabelle Chaussenot, 1,2
Emmanuelle C. Genin, Sandra Lacas-Gervais, Konstantina Fragaki, Laetitia Berg-Alonso, Yusuke Kageyama, Valérie Serre, David G. Moore, Annie Verschueren, Cécile Rouzier, 1,2
Isabelle Le Ber, Gaëlle Augé, Charlotte Cochaud, Françoise Lespinasse, Karine N'Guyen, Anne de Septenville, Alexis Brice, Patrick Yu-Wai-Man, Hiromi Sesaki, Jean Pouget and Véronique Paquis-Flucklinger,

FTD & ALS: genetic, clinical & histopathology data

[Hardy J & Rogaeva E, Experimental Neurology, 2013]

	Senetics of ALS	and/or FTD	Continuum based on:									
Gene	Frequency in familial cases	Type of mutations	Clinical presentation	Brain Pathology*	Likely pathological effect							
SOD1	~20%	mainly missense	ALS	SOD1/p62	Toxic aggregation							
FUS	~5%	mainly missense, & in-frame small	ALS	FUS/p62	DNA/RNA metabolism							
TARDBP (TDP43)	MA CH	Novel disease genes: MATR3 (RNA/DNA-binding protein): ALS [Johnson et al, Nature Neur, 2014] CHCHD10 (mitochondrial protein): ALS/FTD [Bannwarth et al., Brain, 2014]										
C9orf72	~309 CII	CIIDIO (IIIIOCIIOIIGI IA	i protein). ALS/F1	p62/repeat- dipeptides, UBQLN2	Toxic aggregation (?) Low C9orf72 expression (?)							
VCP	Rare	missense	FTD, ALS, IBMPFD	TDP43/p62	Autophagy							
SQSTM1 (p62)	~3%	missense and nonsense	FTD, ALS, PDB	TDP43/p62	Autophagy							
OPTN	Rare	missense and nonsense (haploinsufficiency)	ALS/FTD, glaucoma PDB (by GWAS)	TDP43/p62	Autophagy							
UBQLN2	Rare	missense	ALS, FTD, SP, MS	TDP43/p62, UBQLN2, FUS, OPTN	Autophagy							
GRN	~10%	nonsense (haploinsufficiency)	FTD, CLN11	TDP43/p62	Autophagy/lysosomal pathway							
СНМР2В	Rare	C-terminal truncation of the CHMP2B	FTD	p62	Autophagy/lysosomal pathway							
МАРТ	~10%	missense and splicing of exon 10	FTD	abnormal tau filaments (tangles)	Toxic aggregation (defect in neuronal cytoskeleton)							

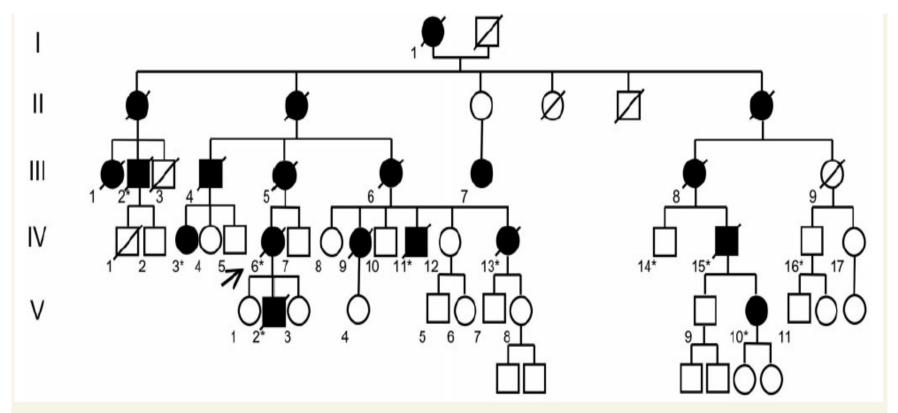
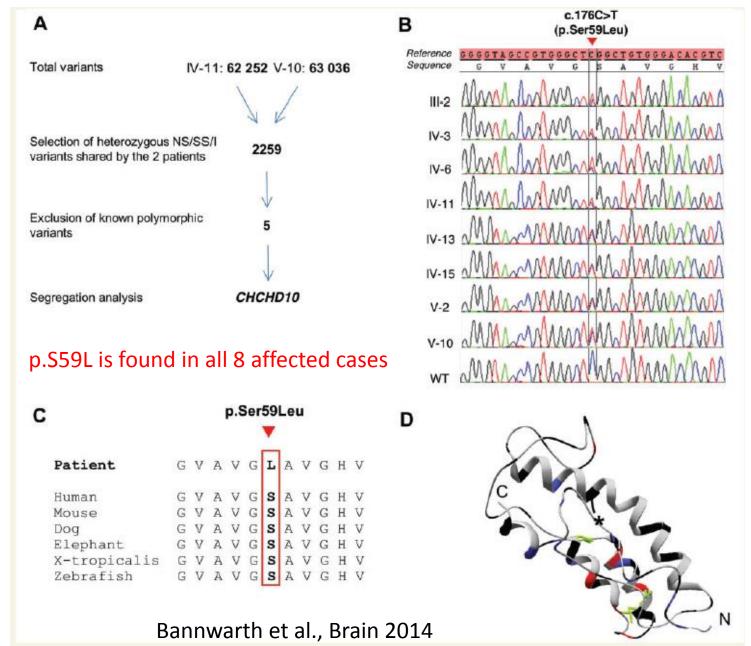
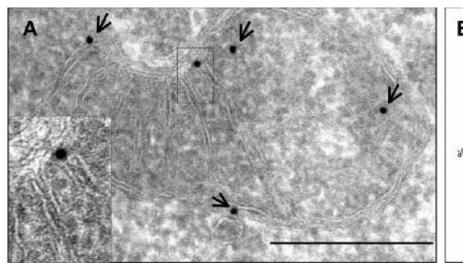
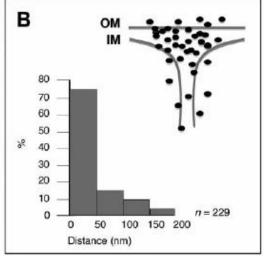



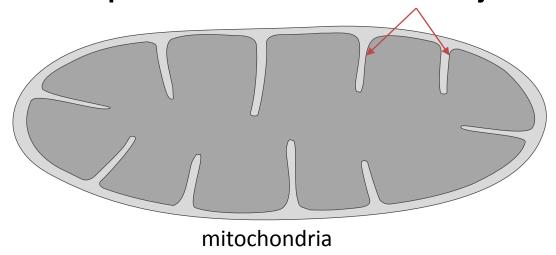
Figure 1 Pedigree of the first family. Solid symbols represent clinically affected individuals. Asterisk corresponds to individuals tested for segregation analysis.

Patients of the French family presented with a complex phenotype, including:


- ALS (main)
- ALS/FTLD
- mitochondrial myopathy
- cerebellar ataxia
- parkinsonism


Result of whole exome sequencing of 2 affected family members

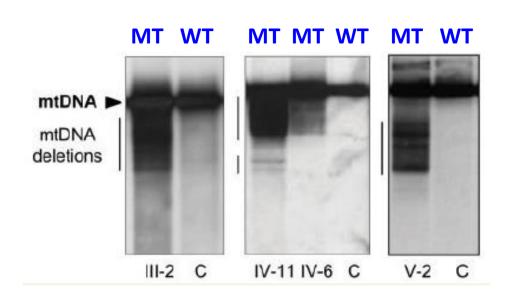
CHCHD10 is located in mitochondrial intermembrane space


Bannwarth et al., Brain 2014

Immunoelectron microscopy of CHCHD10

CHCHD10 protein is enriched at cristae junctions

Destruction of the mitochondrial network in CHCHD10 patients


Bannwarth et al., Brain 2014

Muscle biopsy shows respiratory chain deficiency

Defect in assembly of mitochondrial Complex V

MT WT Complex I Complex V Complex III Complex IV Complex IV V-2 C

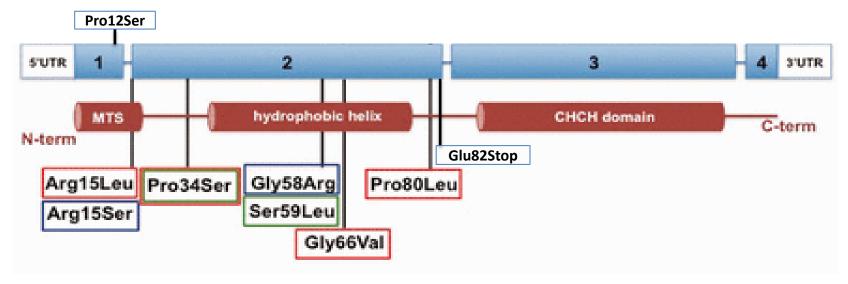
Deletions in mitochondrial DNA

Brain pathology in mutation carriers is unknown

CHCHD10 is confirmed as ALS gene: novel p.R15L in 3 ALS familes

BRAIN
A JOURNAL OF NEUROLOGY

Brain 2014: Page 1 of 2 | e1


LETTER TO THE EDITOR

Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis

Janel O. Johnson, Shannon M. Glynn, J. Raphael Gibbs, Mike A. Nalls, Mario Sabatelli, Gabriella Restagno, Vivian E. Drory, Adriano Chiò, Ekaterina Rogaeva and Bryan J. Traynor

- By WGS we detected a p.R15L mutation segregating with ALS (6 patients/family).
- It was observed in 2 other familial ALS patients.

CHCHD10 structure: exon 2 is a mutation hotspot

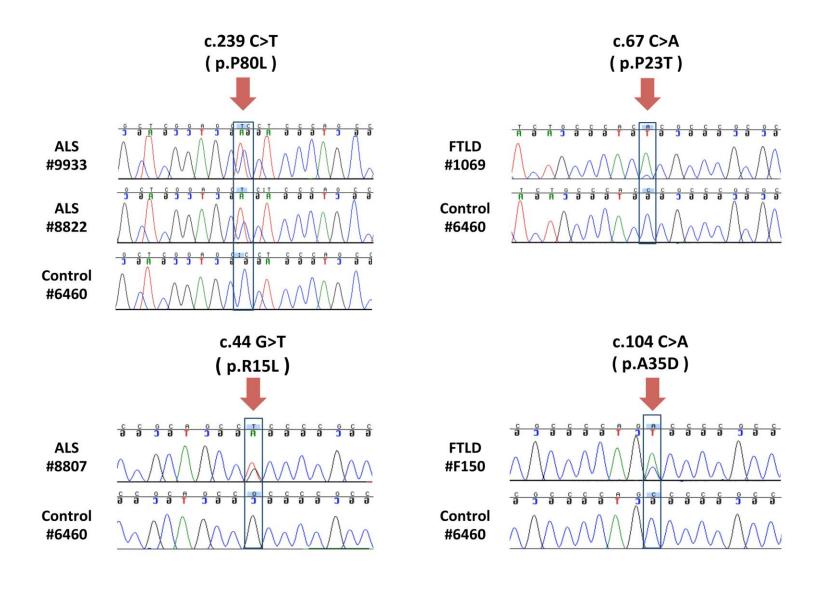
[Modified from Ronchi et al., 2015 Brain]

Color for phenotypes: ALS, FTD-ALS, mitochondrial myopathy

Mitochondrial targeting sequence (MTS): protein localization

Hydrophobic helix: protein-protein interaction

Are there any CHCHD10 mutations in related diseases (ALS, FTD, AD, PD)?

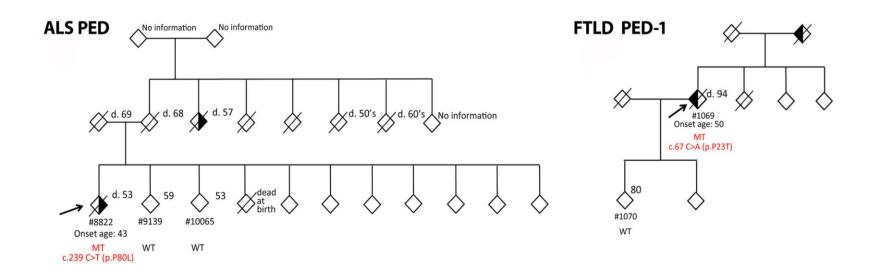

LETTER TO THE EDITOR

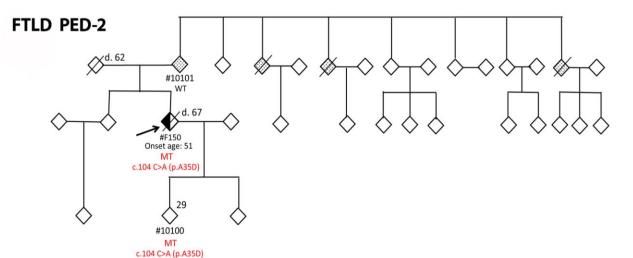
Mutation analysis of CHCHD10 in different neurodegenerative diseases

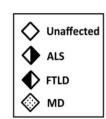
Ming Zhang, 1,* Zhengrui Xi, 1,* Lorne Zinman, 2 Amalia C Bruni, 3 Raffaele G Maletta, 3 Sabrina A. M. Curcio, 3 Innocenzo Rainero, 4 Elisa Rubino, 4 Lorenzo Pinessi, 4 Benedetta Nacmias, 5 Sandro Sorbi, 5 Daniela Galimberti, 6 Anthony E. Lang, 7,8 Susan Fox, 7,8 Ezequiel I. Surace, 9 Mahdi Ghani, 1 Jing Guo, 1 Christine Sato, 1 Danielle Moreno, 1 Yan Liang, 1 Julia Keith, 2 Bryan J. Traynor, 10 Peter St George-Hyslop 1,8,11 and Ekaterina Rogaeva 1,8

Cohorts	Age at onset, y, mean (SD)
ALS (n=204)	58.9 (13.2)
FTD (n=158)	64.0 (8.9)
PD (n=153)	51.3 (12.2)
AD (n=141)	74.3 (13.4)
Controls (n=497)	>65 y.o.

We detected 4 CHCHD10 mutations that are not found in controls

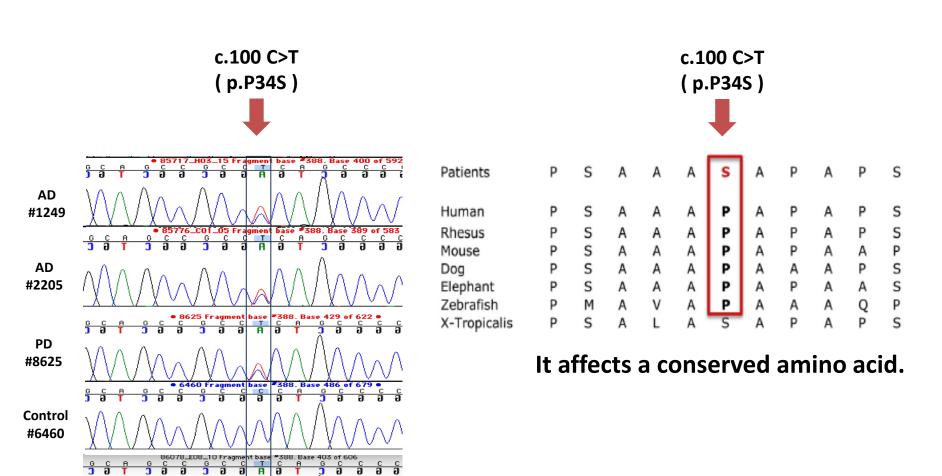



Clinical information of CHCHD10 missense variant carriers


CRND #	Diagnosis	Familial	Sex	Age at onset	Duration (years)	Site of Onset	CHCHD10 exon2 mutation		
8807	ALS	No	M	54	on going	Upper limb (began at the	c.44G>T (p.R15L)		
0007	пцо		1*1	JT	on going	right, weakness)	c.44d>1 (p.R13L)		
0022	ALS	Yes	г	43	0	Upper limb (began in left	- 220C> T (- DOOL)		
8822			F		9	arm)	c.239C>T (p.P80L)		
9933	ALS	No	F	58	on going	Bulbar	c.239C>T (p.P80L)		
1069	FTLD	Yes	F	50	44	NA	c.67C>A (p.P23T)		
F150	bvFTLD	No	F	51	16	NA	c.104C>A (p.A35D)		

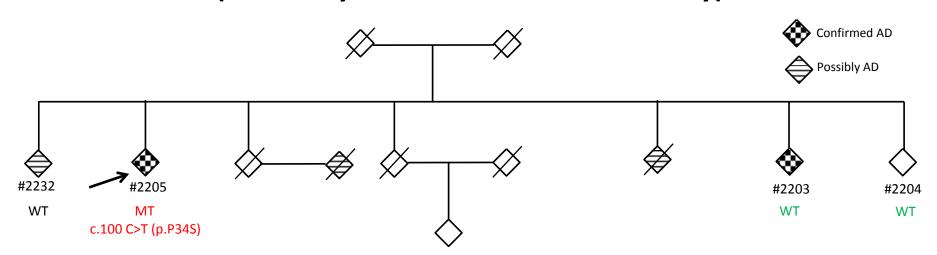
Our patients had slow disease progression (e.g. in [Muller et al., 2014]).

The result of segregation analysis in CHCHD10 families


MT = mutant allele WT = wild type allele

Conservation analysis of the CHCHD10 protein across species: regions flanking the mutations

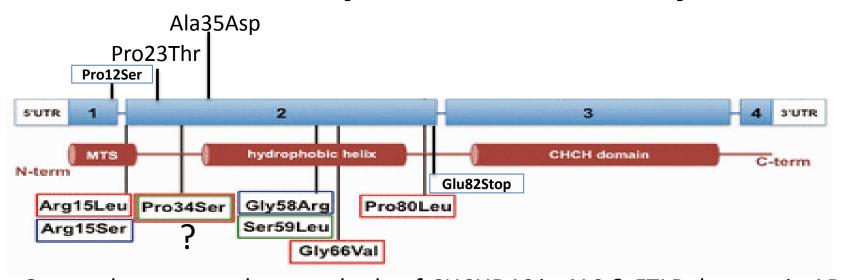
p.P80L (ALS)													p.R	15L (ALS)								
Patient	G	G	S	S	Е	L	S	Q	Р	Α	٧	Patient	R	Р	-	Α	S	L	Р	Α	Α	Р	S
Human	G	G	S	S	E	P	S	Q	Р	Α	V	Human	R	Р	-	Α	S	R	Р	Α	Α	Р	S
Rhesus	G	G	S	S	Е	Р	S	Q	Р	Α	Α	Rhesus	R	Р	-	Α	S	R	Р	Α	Α	Р	S
Mouse	G	G	N	S	Ε	Р	Α	Q	Р	Α	V	Mouse	R	Р	-	V	S	R	Р	Α	Р	Р	Р
Dog	G	G	S	S	Ε	Р	Α	Q	Р	Α	V	Dog	R	Р	-	Α	S	R	Р	Α	Α	Р	S
Cat	G	G	S	S	Е	Р	Α	Q	Р	Α	Т	Cat	R	Р	_	Α	S	R	Т	Α	Α	Р	S
Elephant	G	G	S	S	Ε	Р	Α	Q	Р	Α	V	Elephant	R	S		Α	R		H	G	Н	Р	Р
X-Trpicalis	G	G	S	S	Ε	Р	S	K	Р	V	Α	X-Tropicalis		Т		Α	S	S	Н	Α	S	S	P
Zebrafish	G	G	S	S	S	E	Α	Р	K	Р	Α	Zebrafish	P	A	Р	A	S	A	P	A	P	S	Y


p.P23T (FTD)						p.A35D (FTD)															
Patient	Α	P	S	Α	Н	Т	Р	Α	Н	Р	Р	Patient	Α	Α	-	-	Р	D	Р	Α	Р
uman	Α	Р	S	А	Н	Р	P	Α	Н	P	P	Human	Α	Α	-	-	Р	А	P	Α	Р
Rhesus	Α	Р	S	Α	Н	P	P .	Α	Н	P	P	Rhesus	Α	Α	-	-	Р	Α	Р	Α	Р
		Р	S		Α	P	Р		р	Р	P	Mouse	-	-	Α	Α	Р	Α	Р	Α	Α
Dog	Α	Р	3	Α			'	Α	•	Ρ	Р	Dog	Α	Α	Α	Α	Α	Α	Α	Α	Р
Cat	Α	Р	S	V	Н	P	P	Α	Н	Р	Р	Elephant	Α	С	G	Н	S	Α	Р	С	S
Elephant	Н	Р	Р	G	R	Р	-	-	-	-	-	X-Tropicalis	_	_	L	Α	S	Α	Р	Α	Р
Mouse	Р	Р	Р	Α	-	-	-	-	Н	Р	Р	Zebrafish	-	Α	V	Α	Р	Α	Α	Α	Q
X-Tropicalis	S	S	Р	Α	Р	Α	Р	Α	N	Р	Р	Cat	Α	Α	-	-	Р	Α	Р	Т	Р
7ehrafish	D	ς	٧	Δ	D	Δ	D	Δ	Δ	D	D										

The p.P34S variant was detected in control, PD & AD subjects

Control #5306

The p.P34S variant does not segregate with AD phenotype (PD family was not available for study)


		Public Database		In house					
	NHLBI Exome sequencing project	1000 Genome project (European cohort)	ExAC (European cohort)	Controls	PD	AD			
p.P34S frequency	0	0.001	0.003	0.007	0.003	0.007			

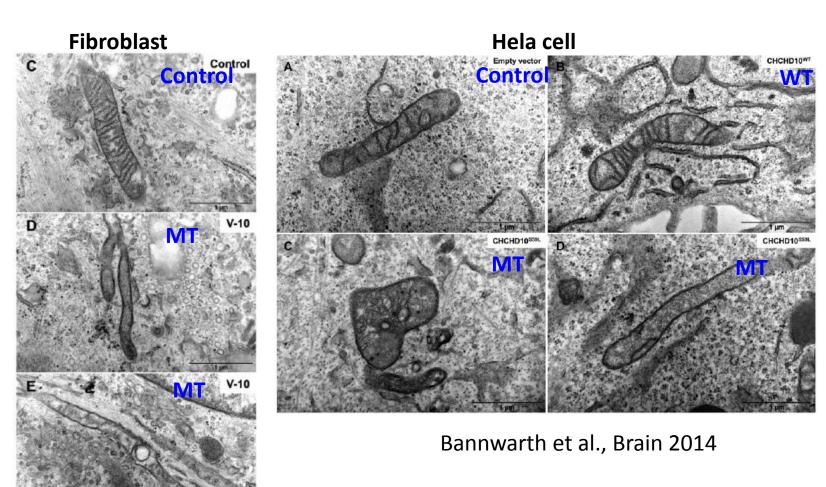
- Our study did not support the pathogenic nature of the p.P34S variant, in contrast to the reports that did not avaluated sufficient number of controls (Chaussenot et al., 2014; Ronchi et al., 2015; Chiò et al., 2015).
- Dols-Icardo et al. 2015 confirmed our conclusion in Spanish study

Scoop from all CHCHD10 reports (modified from Bannwarth et al., Brain 2015)

	Bannwar th et al., 2014	Chaussen ot et al., 2014	Muller et al., 2014	Johnso n et al., 2014	Ajroun d-Driss et al., 2015	Rochi et al., 2015	Kurzwell y et al., 2015	Chiò et al., 2015	Zhang et al., 2015	Oriol et al., 2015
Cases no.	8	3	5	6	10	3	4	3	5	8
Myopathy	8	-	-	-	10	-	-	-	-	-
FTD	-	-	-	-	-	-	-	-	2	5
ALS/FTD	6	3	-	-	-	-	-	-	-	-
ALS	-	-	5	6	-	3	4	3	3	3
Cerebellar sign	5	-	-	-	-	-	1	-	-	-
parkinsonism	1	-	-	-	-	-	-	-	-	1
Age at onset	49-65	59-67	35-73	?	?	25-75	41-73	44-69	43-58	58
Disease duration	1-27	4-8	6-17	?	>30	2-8	2-15	1.3-7	9-44	11, >3
Muscle biopsy	RRF, COX	-	-	-	RRF	RRF, COX	-	-	-	
Mutations	S59L	P34S S59L	G66V <u>R15L</u>	<u>R15L</u>	<u>R15S</u> G58R	P34S P80L	<u>R15L</u>	P34S	P34S P80L <u>R15L</u> P23T A35D	P34S P12S Q82X

Summary of CHCHD10 study

- Our study supports the causal role of CHCHD10 in ALS & FTLD, but not in AD & PD:
 - 2 FTLD patients with novel mutations (p.P23T & p.A35D)
 - 3 ALS patients with known mutations (p.P80L & p.R15L)
 - the pathogenic nature of the p.P34S variant is questionable
- The mutation frequencies in our dataset:
 - 3% for familial & 1% for sporadic ALS
 - 2% for familial & 1% for sporadic FTD
- Carriers are characterized by long duration (9 y. of ALS, 16-44 y. of FTLD)
- Ongoing proteomics studies in fibroblasts from carriers of the p.P80L and p.R15L


Would other structurally similar proteins contribute to Neurodegenerative diseases?

MTS (N-terminal), CHCH domain (C-terminal), share 55% amino acids sequence.

- Mutations in *CHCHD2* were very recently reported to cause PD in Japanese patients (Funayama et al. 2015, Lancet Neurology).
- Both CHCHD2 and CHCHD10 are linked to the mitochondrial pathway like several known PD genes (e.g. PINK1 and PARK2).

- Mutant CHCHD10 leads to fragmentation of the mitochondrial network
- Similar functional studies are needed for CHCHD2...

CHCHD2 and PD [Funayama et al. 2015]

- A Thr61Ile mutation was identified in 13 cases from two autosomal dominant Japanese PD families.
- Two other familial PD cases had different mutations: Arg145Gln and 300+5G>A (in SH-SY5Y cells it caused exon 2 skipping).
- Two variants (-9T>G & p.P2L) were associated with sporadic PD.

A pilot study of CHCHD2 in Canadian PD patients

No mutations were found in 156 independent familial PD patients.

Scoop from all CHCHD2 reports

	Funayama et al. 2015	Jansen et al. 2015	Puschmann et al. 2015	Liu et al. 2015 (Meta)	Foo et al. 2015
Mutation carriers	15	4	0	0	0
PD cases	857	8170	4	13708	809
AD cases	-	-	-	25580	-
Ethnicity	Japan	European	Sweden	European	Chinese
Thr61lle	13	0	0	-	0
Arg145Gln	1	0	0	-	0
300+5G>A	1	0	0	-	0
rs10043	p=0·0004	-	-	-	-
Rs142444896 (p.P2L)	P=0.002	P>0.05	-	-	P=0.02
rs816411	P=0.22	-	-	P>0.05	-
Other variants	-	Ala32Thr Pro34Leu	-	-	-

Conclusion:

- CHCHD2 mutations are mainly play a role in Japanese population.
- The support for pathogenic nature of the reported mutations is critical in the utility of genetic screening in patient care.

ACKNOWLEDGEMENTS

Ming Zhang Zhengrui Xi Lorne Zinman Christine Sato Danielle Moreno Yan Liang Anthony E. Lang Susan Fox

Peter St George-Hyslop

Clinical studies

Bryan J. Traynor Amalia C Bruni Raffaele G Maletta Sabrina AM Curcio Innocenzo Rainero Elisa Rubino Lorenzo Pinessi **Benedetta Nacmias** Sandro Sorbi Daniela Galimberti **Ezequiel I Surace**

Support: CIHR, NIH, W. Garfield Weston Foundation