POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF POTATO TUBERS WITH COLORED FLESH: THEIR POTENTIAL ROLE IN ACRYLAMIDE FORMATION IN FRENCH FRIES

Diganta Kalita Post Doctoral Research Associate San Luis Valley Research Center Colorado State University http://www.ppb.colostate.edu

Why do we need "Antioxidant"

Proteins Lipids DNA/RNA

DOCTOR FUN

Auntie Oxidant kicks out the Free Radicals.

<u>1. Cardiovascular diseases (CHD)</u>

Free Radicals

 $(OH^{-}, O_{2}^{-}, {}^{1}O_{2})$

- 2. Cancers
- 3. Inflammatory diseases
- <u>4. Respiratory diseases</u>
- 5. Diabetes mellitus
- <u>6. Cataract</u>
- 8. Aging process
- <u>9. Others:</u> Parkingson's disease, Alzheimer's disease etc

Sources of antioxidants in the diet

Potatoes....

4th major food after rice, wheat and maize Seeding new cultivars is gaining interest...

The first San Luis Valley Research Center was established in 1888 (the same year the

ALL ABOUT US

S MEET OUR TEAM

The Colorado State University Potato Program at the San Luis Valley Research Please click on the link below for the Potato Program Contact Information.

CONTACT US

Important phytonutrients in fruits, vegetables and potato

Objective 1: Comparison of Polyphenol content and antioxidant activity of potato tubers with pomegranate and blueberries

Mechanism of Acrylamide formation

Acrylamide formation in French fries

Factors affecting :

✓ Content of asparagine & reducing sugars
✓ Time and temperature of cooking
✓ pH

✓ Surface-to-volume ratio

Solution....

- Breeding
- Adding/blanching
 - Citric acid, amino acid
 - Metal salts (Na, Ca, V)
 - Phenolics

Critical role of antioxidant on acrylamide formation

Antioxidant	Model system	Effect
caffeic acid, catechin, cinnamic acid, ferulic acid, epicatechin	aqueous	no reduction
caffeic acid, ferulic acid,	emulsion	reduction
TBHQ, BHA, BHT, ferulic acid, vitamin C	aqueous	reduction
oregano phenolic extract	potato	30% reduction
virgin olive oil phenolic extract	potato	45 % enhancement
Bamboo leaves extracts	potato	74 % reduction

Report with endogenious phenolic compounds was limited Food Research International (2013), 54, 753-759 Objective 1: Polyphenol content and antioxidant activity of potato tubers comparison with pomegranate and blueberries

Objective 2: Role of polyphenols in Acrylamide formation in the French fries

METHODS

Measurement of Total phenolics

FCR method from methanolic extraction (GAE/g FW)

Antioxidant activity

DPPH

DPPH radical-scavenging activity (%) = $[(A_{control} - A_{sample}/A_{control})] \times 100$ where A is the absorbance at 515 nm.

> ABTS

Monitoring absorbance of ABTS++ radical at 734 nm

> ORAC

fluorescence conditions: excitation at 485 nm and emission at 520 nm.

ORAC value (µmol TE/g) = hkc ($S_{sample} - S_{blank}$)/ ($S_{Trolox} - S_{blank}$), where h is the ratio between liters of juice and grams of fruits or vegetables, k is the dilution factor, and c is the concentration of Trolox in µmol/L

Extraction & Analysis of Acrylamide by GC-MS method

via bromination derivative

GC-MS Conditions

Apparatus	Varian Saturn 2000R
Column	CP-Sil 24CB, Agilent
Carrier gas	He
low rate	1 ml/min
Injection volume	1 ul
injection temp	250 °C
Temp program	50 C 1min 100 C 2min 0.5
	<i>C</i> /min 10 min, 100 <i>C</i> /min to
	235 C
Retention time	8.091
Acquisition time	21.08 min
Inonisation	EI(70 eV)
Detection	SIM (Acrylamide m/z 150
	& 152 internal St.153 & 155)

Representative chromatographs

Calibration curve

RESULTS

Total phenolics and chlorogenic acid in potato tubers

Total phenolics in potato, blueberries and pomegranate

Antioxidant activities in DPPH, ABTS and ORAC assays

300

Correlation between Total phenolics and antioxidant assays

Antioxidant capacity per serving

Food	Serving Size	TAC/serving (µ mol of TE)	
		ORAC	ABTS
Pomegranate	30 ml	21270	7743
Blueberries	(40 g)	19345	5170
Purple Majesty	173 g	13886	3946
CO97226-2R/R	173 g	5066	3559

Red and purple fleshed potato tubers had higher levels of total phenolics than the yellow and white tubers

Red and purple fleshed potato tubers had comparable levels of antioxidant activity with blueberries and pomegranate

Asparagine and reducing sugars in potato tubers

Acryalmide in French fries

Correlation of acryalmide with asparagine, reducing sugars, and phenolics

Effect of chlorogenic acid

Conclusions

Red and purple fleshed potato tubers had higher levels of total phenolics than the yellow and white tubers

Red and purple fleshed potato tubers had comparable levels of antioxidant activity with blueberries and pomegranate

Potato tubers with lower levels asparagine and reducing sugars, and higher levels phenolics form lower levels of acrylamide

Acknowledgement

Dr Sastry S Jayanty

Dr David G Holm

Elita Castleberry

Colter Carroll

