The Sympathetic Nervous System (SNS) A not so "sympathetic" regulator of immune function in autoimmune disease: RA as an example Dianne Lorton [‡] Denise Bellinger [¤] Kent State University[‡] Loma Linda University[¤] 3rd International Conference on Clin, & Cell. Immunol, Sept 23- Oct. 1, 2014 #### **Rheumatoid Arthritis** - **Autoimmune Disease** - Chronic inflammatory response - Production of autoantibodies - Loss of Tolerance: Imbalance between autoreactive effector T cells (CD4+ Th1 & Th 17) and T reg cells - Th cell balance regulated by the SNS - > SNS activity is chronically elevated in RA patients - How this impacts Th cell balance is not known ## SNS Regulates Th Cell Differentiation via β²-AR Activation of cAMP-PKA Pathway β_2 CD4+ β_2 (200-750 sites/cell) CD4+ Th1 clones β_2 (250 sites/cell) CD4+ Th2 clones (no detectable β_2) CD4+ Treg cell ¹? CD4+ Th17 cells? **APCs** α , α_1 , α_2 , β , β_2 ¹Guereschi et al. Eur J Immunol. 2013 Apr;43(4):1001-12. #### β_2 -AR Shifts Th0 cell \rightarrow Th2 Differentiation Tregs? Th17? Guereschi et al., 2013 # Hypothesis: Reduce disease severity is due in part to a β_2 -AR driven shift in Th1 vs Th2 cell balance. Disease **Ag Processing/** Clearance (AA: Lorton et al., 1998; 2004) (CIA: Malfait et al., 1999; Härle et al., 2005 #### **Experimental Design** ## Spleen: Failure of a β_2 -AR agonist to shift from a Th1 to Th2 cytokine profile ## PBMC: Failure of a β_2 -AR agonist to shift Th1 cytokine profiles Wahle et al., 2006. Failure of catecholamines to shift T-cell cytokine responses toward a Th2 profile in patients with rheumatoid arthritis. Arthritis Res. Ther., 8(5):R138. #### Conclusions - Different responses in each tissue examined: animal models critical for understanding RA - Stimulating β_2 -ARs after disease onset fails to inhibit Th1 cell driving cytokines - Spleen: β_2 -AR agonists produced no change IFN- γ , IL-2, IL-4 or TNF- α , and increased IL-10 (source ?) - DLN stimulating β_2 -ARs promotes IFN- γ & IL-2, no change in IL-4, IL-10, TNF- α - β_2 -AR stimulation under normal circumstances inhibits IFN- γ and IL-2 production via cAMP-PKA - These findings indicate abnormal β_2 -AR functions #### Conclusions - In spleen cells, the inability of terbutaline to reduce IFN- γ and IL-2 could be easily explained by the well-known down-regulation and desensitization of β_2 -AR with repeated stimulation. - Subsequent, cAMP assays and receptor binding experiments, confirmed this hypothesis (Lorton et al., Clin Dev Immunol., 2013) - However, the terbutaline-induced increase in IFN- γ and IL-2 were intriguing. \rightarrow not explained by canonical signaling of β_2 -AR ## Does Altered β2-AR Coupling to Second Messengers Occur in DLNs in AA: cAMP-PKA to ERK1/2? THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 281, NO. 2, pp. 1261–1273, January 13, 2006 © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. #### β-Arrestin-dependent, G Proteinindependent ERK1/2 Activation by the β2 Adrenergic Receptor* Received for publication, June 16, 2005, and in revised form, November 2, 2005 Published, JBC Papers in Press, November 9, 2005, DOI 10.1074/jbc.M506576200 Sudha K. Shenoy‡1,Matthew T. Drake‡2, Christopher D. Nelson‡, Daniel A. Houtz‡, Kunhong Xiao‡, Srinivasan Madabushi§, Eric Reiter‡¶, Richard T. Premont‡, Olivier Lichtarge§, and Robert J. Lefkowitz‡3 #### Altered Receptor Signaling in the DLN? ### Hypothesis: Terbutaline induces a shift in β_2 -ARs signaling from cAMP-PKA to ERK 1/2 in the DLN **Day 12-28** Terbutaline (β₂-AR agonist; 1.5 mg/ml/day i.p.) Saline Vehicle #### Day 1 CFA (0.3 mg M. butyricum in 100 μl MO) Mineral Oil (MO) M. Butyricium (in saline; SMB) Saline #### Day 21 or 28 #### **Outcome Assessments** DLN: β_2 -AR Western Blots (antibodies to detect β_2 -ARs, and β_2 -ARs phosphorylated by PKA and or GRK) Draining Lymph Nodes (DLN) #### Unchanged DLN β₂-AR Density Late Disease ANOVA; Bonferoni Post-Hoc Test N=4; *P < 0.05; **P < 0.01, ***P < 0.001 #### Altered Receptor Signaling in the DLN? Conclusions: These findings along with increased IFN- γ indicate that β_2 -ARs in DLN are <u>NOT</u> down-regulated or desensitized. #### β₂-AR phosphorylated by PKA and GRK in DLN ANOVA; Bonferoni Post-Hoc Test N=4; *P < 0.05; **P < 0.01, ***P < 0.001 #### Altered Receptor Signaling in the DLN? Conclusions: These findings coupled with increased IFN- γ , provide support β_2 -AR signaling via ERK1/2. #### Summary - Findings support a shift in β_2 -AR receptor signaling from cAMP-PKA to ERK1/2 in DLN - β_2 -AR agonist elevated IFN- γ and IL-2 - No change in β_2 -AR density, - Receptor phosphorylation by PKA increased PKA (day 21) and GRK phosphorylation (day 21 and 28) #### **Future Studies** - Are GRK5/6 and ERK 1/2 elevated in DLN cells? - Can production of IFN-γ be blocked by inhibitors of ERK1/2 pathway? - Why the different profiles in the spleen and DLN? - Inflammatory cytokine levels - CFA distribution/concentration - Does the SNS regulate balance between Th17 and Treg cells? #### **Acknowledgements** Kent State University Cheri Lubahn, Ph.D. Jill Schaller Tracy Osredkar Loma Linda University School of Medicine Denise Bellinger, Ph.D. Christine Molinaro Funded by: NIMH, NIAMS, Arizona Disease CRC, Sun Health Research Institute & Sun City West Community Center Fund, LLU Anatomy and Pathology Dept. SNS Function: Respond to stress & maintain normal body functions (homeostasis) The SNS integrates the functions of many systems required to mount an immune response # SNS Inhibition of Th1 Cytokines (IFN- γ and IL-2) to Push Th2 Cell Differentiation Occurs via β_2 -AR of cAMP-PKA Pathway ¹Guereschi et al. Eur J Immunol. 2013 Apr;43(4):1001-12. The SNS integrates the functions of many systems required to mount an immune response # Reciprocal Immune System to SNS Communication in RA - Mechanism for emotional distress to impact health & disease - ~ 80% of patients associate disease onset with a severe emotional life stressor (Trigger?) - Stroke Victims: no RA in paralyzed limbs (↓ vs ↑ SNS nerve activity) ## Splenocyte β_2 -AR Receptor Binding in Arthritic Rats: Saturation Curves #### SNS-IS Cross-Talk Pathology in RA: Reduced Spleen β₂-AR Density Late Disease **ANOVA**; Bonferoni Post-Hoc Test N=4; *P < 0.05; **P < 0.01, ***P < 0.001 Lorton et al., (2013) Clin Dev Immunol.;2013:764395 ## β_2 -AR Phosphorylation Patterns in the Spleen ANOVA; Bonferoni Post-Hoc Test N=4; *P < 0.05; **P < 0.01, ***P < 0.001 #### **Hypothesis: Chronic high SNS activity in RA induces** β₂-AR down regulation and desensitization Day 1 ^a0.3 mg Mycobacterium butyricum in 0.1 ml sterile mineral oil aCFA/ICA (vehicle) **Autoantigen: HSP 65** **Day 28** **Day 21 or 28 Harvest Spleen & DLN cells** cAMP assay **β₂-AR Receptor Binding Assays β₂-AR Western Blots** using antibodies to detect phosphorylated receptor #### SNS-IS Cross Talk in the Spleen? β₂-AR & Signaling via the Canonical Pathway: cAMP Hypothesis: Chronic high SNS activity in RA induces β_2 -AR down regulation and desensitization in splenocytes ## Hypothesis: Chronic high SNS activity in RA induces β_2 -AR down regulation and desensitization in the spleen #### **SNS-IS Cross-Talk Pathology in RA:** β₂-AR Agonist Fails to Induce cAMP in Splenocytes # SNS-IS Cross-Talk Pathology in RA: Splenocyte β_2 -AR have Reduced Agonist Affinity and Density **ANOVA**; Bonferoni Post-Hoc Test N=6; * P < 0.05; #P < 0.01 Lorton et al., (2013) Clin Dev Immunol.;2013:764395 ## Hypothesis: Chronic high SNS activity in RA induces β_2 -AR down regulation and desensitization in the spleen #### Altered Receptor Signaling in the DLN?