The Sympathetic Nervous System (SNS)

A not so "sympathetic" regulator of immune function in autoimmune disease:

RA as an example

Dianne Lorton [‡] Denise Bellinger [¤]

Kent State University[‡] Loma Linda University[¤]

3rd International Conference on Clin, & Cell. Immunol, Sept 23- Oct. 1, 2014

Rheumatoid Arthritis

- **Autoimmune Disease**
 - Chronic inflammatory response
 - Production of autoantibodies
 - Loss of Tolerance: Imbalance
 between autoreactive effector T cells
 (CD4+ Th1 & Th 17) and T reg cells
- Th cell balance regulated by the SNS

- > SNS activity is chronically elevated in RA patients
- How this impacts Th cell balance is not known

SNS Regulates Th Cell Differentiation via β²-AR Activation of cAMP-PKA Pathway

 β_2

CD4+ β_2 (200-750 sites/cell)

CD4+ Th1 clones β_2 (250 sites/cell)

CD4+ Th2 clones (no detectable β_2)

CD4+ Treg cell ¹?

CD4+ Th17 cells?

APCs

 α , α_1 , α_2 , β , β_2

¹Guereschi et al. Eur J Immunol. 2013 Apr;43(4):1001-12.

β_2 -AR Shifts Th0 cell \rightarrow Th2 Differentiation

Tregs? Th17?

Guereschi et al., 2013

Hypothesis: Reduce disease severity is due in part to a β_2 -AR driven shift in Th1 vs Th2 cell balance.

Disease

Ag Processing/

Clearance

(AA: Lorton et al., 1998; 2004)

(CIA: Malfait et al., 1999; Härle et al., 2005

Experimental Design

Spleen: Failure of a β_2 -AR agonist to shift from a Th1 to Th2 cytokine profile

PBMC: Failure of a β_2 -AR agonist to shift Th1 cytokine profiles

Wahle et al., 2006. Failure of catecholamines to shift T-cell cytokine responses toward a Th2 profile in patients with rheumatoid arthritis. Arthritis Res. Ther., 8(5):R138.

Conclusions

- Different responses in each tissue examined: animal models critical for understanding RA
- Stimulating β_2 -ARs after disease onset fails to inhibit Th1 cell driving cytokines
 - Spleen: β_2 -AR agonists produced no change IFN- γ , IL-2, IL-4 or TNF- α , and increased IL-10 (source ?)
 - DLN stimulating β_2 -ARs promotes IFN- γ & IL-2, no change in IL-4, IL-10, TNF- α
- β_2 -AR stimulation under normal circumstances inhibits IFN- γ and IL-2 production via cAMP-PKA
- These findings indicate abnormal β_2 -AR functions

Conclusions

- In spleen cells, the inability of terbutaline to reduce IFN- γ and IL-2 could be easily explained by the well-known down-regulation and desensitization of β_2 -AR with repeated stimulation.
- Subsequent, cAMP assays and receptor binding experiments, confirmed this hypothesis (Lorton et al., Clin Dev Immunol., 2013)
- However, the terbutaline-induced increase in IFN- γ and IL-2 were intriguing. \rightarrow not explained by canonical signaling of β_2 -AR

Does Altered β2-AR Coupling to Second Messengers Occur in DLNs in AA: cAMP-PKA to ERK1/2?

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 281, NO. 2, pp. 1261–1273, January 13, 2006 © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

β-Arrestin-dependent, G Proteinindependent ERK1/2 Activation by the β2 Adrenergic Receptor*

Received for publication, June 16, 2005, and in revised form, November 2, 2005 Published, JBC Papers in Press, November 9, 2005, DOI 10.1074/jbc.M506576200

Sudha K. Shenoy‡1,Matthew T. Drake‡2, Christopher D. Nelson‡, Daniel A. Houtz‡, Kunhong Xiao‡, Srinivasan Madabushi§, Eric Reiter‡¶, Richard T. Premont‡, Olivier Lichtarge§, and Robert J. Lefkowitz‡3

Altered Receptor Signaling in the DLN?

Hypothesis: Terbutaline induces a shift in β_2 -ARs signaling from cAMP-PKA to ERK 1/2 in the DLN

Day 12-28

Terbutaline (β₂-AR agonist; 1.5 mg/ml/day i.p.) Saline Vehicle

Day 1

CFA (0.3 mg M. butyricum in 100 μl MO)
Mineral Oil (MO)
M. Butyricium (in saline;
SMB)
Saline

Day 21 or 28

Outcome Assessments

DLN: β_2 -AR Western Blots (antibodies to detect β_2 -ARs, and β_2 -ARs phosphorylated by PKA and or GRK)

Draining Lymph Nodes (DLN)

Unchanged DLN β₂-AR Density Late Disease

ANOVA; Bonferoni Post-Hoc Test N=4; *P < 0.05; **P < 0.01, ***P < 0.001

Altered Receptor Signaling in the DLN?

Conclusions: These findings along with increased IFN- γ indicate that β_2 -ARs in DLN are <u>NOT</u> down-regulated or desensitized.

β₂-AR phosphorylated by PKA and GRK in DLN

ANOVA; Bonferoni Post-Hoc Test N=4; *P < 0.05; **P < 0.01, ***P < 0.001

Altered Receptor Signaling in the DLN?

Conclusions: These findings coupled with increased IFN- γ , provide support β_2 -AR signaling via ERK1/2.

Summary

- Findings support a shift in β_2 -AR receptor signaling from cAMP-PKA to ERK1/2 in DLN
 - β_2 -AR agonist elevated IFN- γ and IL-2
 - No change in β_2 -AR density,
 - Receptor phosphorylation by PKA increased PKA (day 21) and GRK phosphorylation (day 21 and 28)

Future Studies

- Are GRK5/6 and ERK 1/2 elevated in DLN cells?
- Can production of IFN-γ be blocked by inhibitors of ERK1/2 pathway?
- Why the different profiles in the spleen and DLN?
 - Inflammatory cytokine levels
 - CFA distribution/concentration
- Does the SNS regulate balance between Th17 and Treg cells?

Acknowledgements

Kent State University
Cheri Lubahn, Ph.D.
Jill Schaller
Tracy Osredkar

Loma Linda University
School of Medicine
Denise Bellinger, Ph.D.
Christine Molinaro

Funded by: NIMH, NIAMS, Arizona Disease CRC, Sun Health Research Institute & Sun City West Community Center Fund, LLU Anatomy and Pathology Dept.

SNS Function:
Respond to stress &
maintain normal
body functions
(homeostasis)

The SNS
integrates the
functions of many
systems required
to mount an
immune response

SNS Inhibition of Th1 Cytokines (IFN- γ and IL-2) to Push Th2 Cell Differentiation Occurs via β_2 -AR of cAMP-PKA Pathway

¹Guereschi et al. Eur J Immunol. 2013 Apr;43(4):1001-12.

The SNS
integrates the
functions of many
systems required
to mount an
immune response

Reciprocal Immune System to SNS Communication in RA

- Mechanism for emotional distress to impact health & disease
- ~ 80% of patients associate disease onset with a severe emotional life stressor (Trigger?)
- Stroke Victims: no RA in paralyzed limbs (↓ vs ↑
 SNS nerve activity)

Splenocyte β_2 -AR Receptor Binding in Arthritic Rats: Saturation Curves

SNS-IS Cross-Talk Pathology in RA: Reduced Spleen β₂-AR Density Late Disease

ANOVA; Bonferoni Post-Hoc Test

N=4; *P < 0.05; **P < 0.01, ***P < 0.001

Lorton et al., (2013) Clin Dev Immunol.;2013:764395

β_2 -AR Phosphorylation Patterns in the Spleen

ANOVA; Bonferoni Post-Hoc Test

N=4; *P < 0.05; **P < 0.01, ***P < 0.001

Hypothesis: Chronic high SNS activity in RA induces β₂-AR down regulation and desensitization

Day 1 ^a0.3 mg Mycobacterium butyricum in 0.1 ml sterile mineral oil

aCFA/ICA (vehicle) **Autoantigen: HSP 65**

Day 28

Day 21 or 28 Harvest Spleen & DLN cells

cAMP assay **β₂-AR Receptor Binding Assays β₂-AR Western Blots** using antibodies to detect phosphorylated receptor

SNS-IS Cross Talk in the Spleen?

β₂-AR & Signaling via the Canonical Pathway: cAMP

Hypothesis: Chronic high SNS activity in RA induces β_2 -AR down regulation and desensitization in splenocytes

Hypothesis: Chronic high SNS activity in RA induces β_2 -AR down regulation and desensitization in the spleen

SNS-IS Cross-Talk Pathology in RA:

β₂-AR Agonist Fails to Induce cAMP in Splenocytes

SNS-IS Cross-Talk Pathology in RA: Splenocyte β_2 -AR have Reduced Agonist Affinity and Density

ANOVA; Bonferoni Post-Hoc Test

N=6; * P < 0.05; #P < 0.01

Lorton et al., (2013) Clin Dev Immunol.;2013:764395

Hypothesis: Chronic high SNS activity in RA induces β_2 -AR down regulation and desensitization in the spleen

Altered Receptor Signaling in the DLN?

