Does combining body weight support treadmill training with Thera-Band® improve hemiparetic gait?

Diana Veneri, PT, EdD, NCS, RYT

Novel Physiotherapies Conference August 2015

Stroke Statistics

- Approximately 780,000 Americans experience stroke each year.
- Third leading cause of death and the leading cause of disability in the United States.
- Pay over \$65.5 billion per year.
- 25% of all people with stroke are under age 65.
- National Stroke Association: Stroke Facts

BWSTT

- Persons with hemiparesis are able to walk with more normal gait kinematics, EMG timing and improved symmetry during BWSTT.
- Manual assistance sometimes necessary.
- Problematic: more than one person, difficult to consistently and adequately control joints, exhausting, and can place PT in a non-ergonomic position

Thera-Band® and over-ground gait

2004 Thera-Band® Most Creative Use Contest First Place Winner

Exercise Name: "Thera-Band® Assist with Swing Phase of Gait"

Submitted by:

Diana Veneri, MS, PT

Adjunct Faculty

University of Hartford

West Hartford, Conn. USA

Thera-Band® and BWSTT

Feasibility Study

- University Research Lab
- Subject: 54yo female 10 s/p embolic stroke with right hemiparesis, (I) gait with LBQC and AFO household amb, (A) elevations, w/c for community amb
- Purpose: To determine if Thera-Band® could replace the need for manual assistance with BWSTT.
- Study outcomes and limitations

Purpose of the next case study

- ➤ To determine whether the combined interventions of Thera-Band® and BWSTT could be transferred to the clinical setting.
- ➤ To assess the outcome measures of gait speed, gait endurance, symmetry and temporal-spatial parameters, and strength of ankle eversion.

Subject Profile

62 yo male s/p cardio-embolic stroke 9 months prior with residual right hemiparesis affecting the UE more than the LE

Pre-study evaluation/inclusion criteria

- Independent with ADL's and community ambulation using an AFO (~700' at a time)
- MMT 4+/5 of anterior tibialis muscle
- Score of 26/30 MMSE: no cognitive impairment
- Completed PT services at least 3 mo. prior to study; supervised fitness program 4-5x/wk
- Presented with no co-morbidities that would interfere with training

Training Protocol

Treadmill Training

3x/week for 10 weeks

(3)10 min. intervals, 5 min. seated rest periods

Self-selected speed

BWS% reduced per protocol

Resting and Exercise Vitals

Outcome Measures

Weeks 1, 5, 10, 16

- 10 Meter Walk Test (10 MWT)
- 6 Minute Walk Test (6 MWT)
- Hand-held dynamometry (HHD): ankle eversion
- GAITRite

Results

All 90 trials were completed

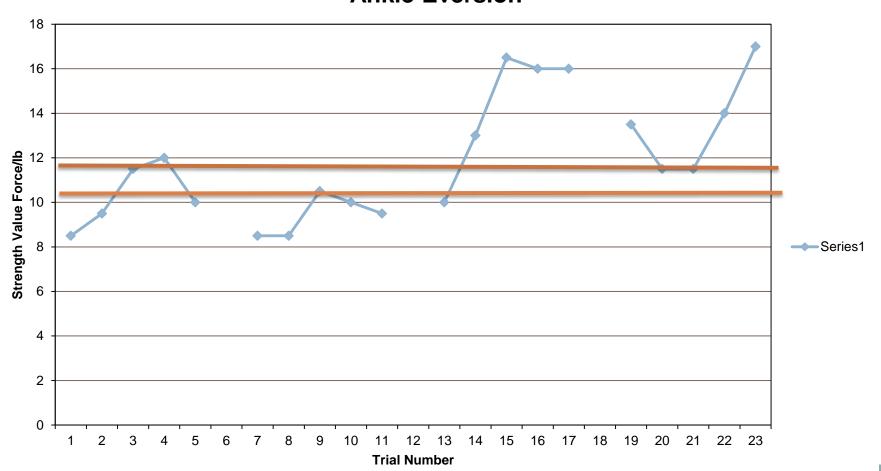
• BWS: $30\% \rightarrow 20\%$ (#53) \rightarrow 15% (#77) and 10% (#85)

Treadmill speed: 0.85m/s at 20% and 0.67m/s at 10%

10 Meter Walk Test

	Week			
	1 (baseline)	5	10	16 (follow-up)
Speed (m/s)	.625	.766	1.08	1.09
%↑ speed wk 1		23%	73%	74%

6 Minute Walk Test


	Week			
	1 (baseline)	5	10	16 (follow-up)
Distance (m)	191	238	327	367
% increase from week 1		25%	71%	92%

Strength Ankle Eversion

	Week				
	Week 1 (baseline)	Week 5	Week 10	Week 16 (Follow-up)	
Strength (Force/Kg)	10.3	9.3	15	13	
% increase from week 1	-	-10%	46%	27%	

Dynamometry

Ankle Eversion

GAITRite

Gait Variable	Baseline Week 1	Week 10	Week 16	% Mean Change from Week 1 to 10	% Mean Change from Week 1 to 16
Paretic Step Length (cm)	44.0	51.3	59.9	16%	36%
Non-Paretic Step Length (cm)	62.7	59.3	67.8	-5%	8%
Paretic Stride Length (cm)	118	111	128	-6%	8%
Non-Paretic Stride Length (cm)	115	111	128	4%	10%
Velocity (cm/sec)	62.6	104	124	67%	98%

Comparing results with estimates of MDC and MCID

Outcome Measure	MDC	% Change this study	MCID	Change this study
10 MWT	16%#	76%	0.1m/s*	0.475m/s
6 MWT	36.58m or 13%#	92%	50m*	175 . 8m

Flansbjer et al 2005, *Perera et al 2006

Discussion

- Improvement in fast gait speed is similar to the results of other studies: Miller et al (2002), Flom-Meland et al (2005), Sullivan et al (2006), Mudge et al (2003) and Lindquist et al (2007).
- Treadmill speed doubled Thera-Band®?
- BWSTT and e-stim, other interventions?

Limitations

- No specific progression protocol for speed or %BWS
- Subject's fluctuation with blood pressure limited his willingness to increase his gait speed and reduce % BWS
- Use of handrail
- Subject was highly motivated
- No measure of moment arm during HHD
- Can not determine extent to which each intervention contributed to the results
- Case report included only one participant

Future Research

- Increase "n"
- Acute CVA
- Development of the protocol
- Cross-over design
- Kinematic analysis and surface EMG

Conclusions

The combined interventions of BWSTT and Thera-Band® could improve gait speed, endurance, gait symmetry, temporal-spatial gait parameters and strength of ankle eversion.

Acknowledgements

- Mount Sinai Rehabilitation Hospital (St. Francis)
 - Carrie Schmedding, IRB Coordinator
- Gaylord Specialty Care
 - Andrea Oberlander, MPT

- Student Research Group
 University of Hartford
 - Mike Kuo, SPT
 - Janell Mancini, SPT
 - Orianna Parunak, SPT
 - Jay Waller, SPT