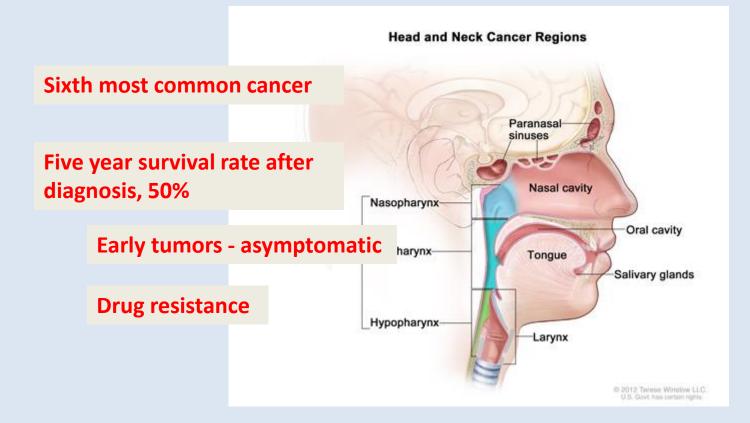
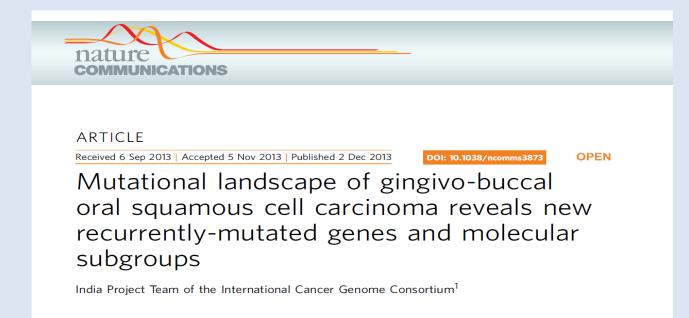
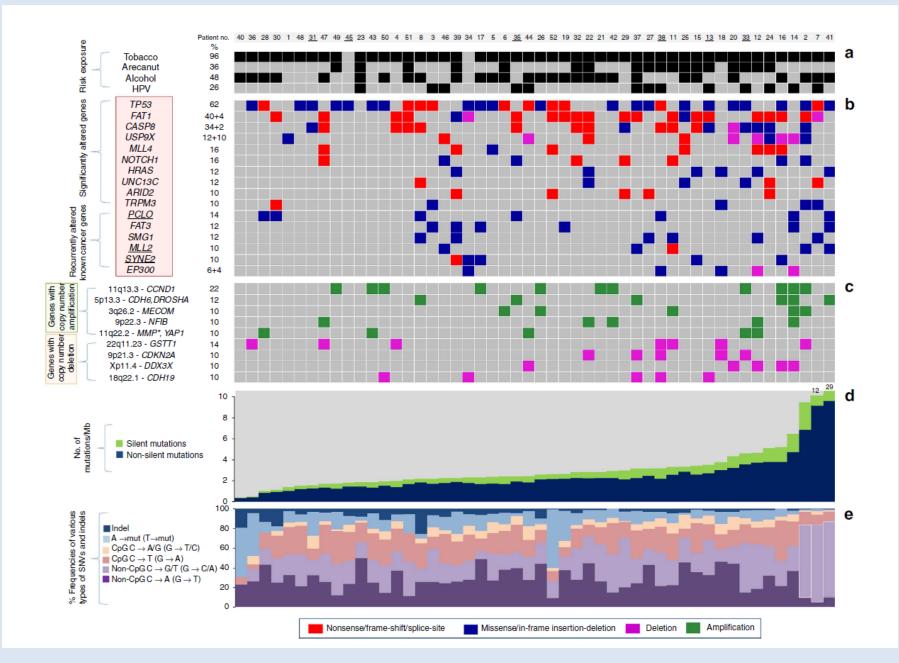
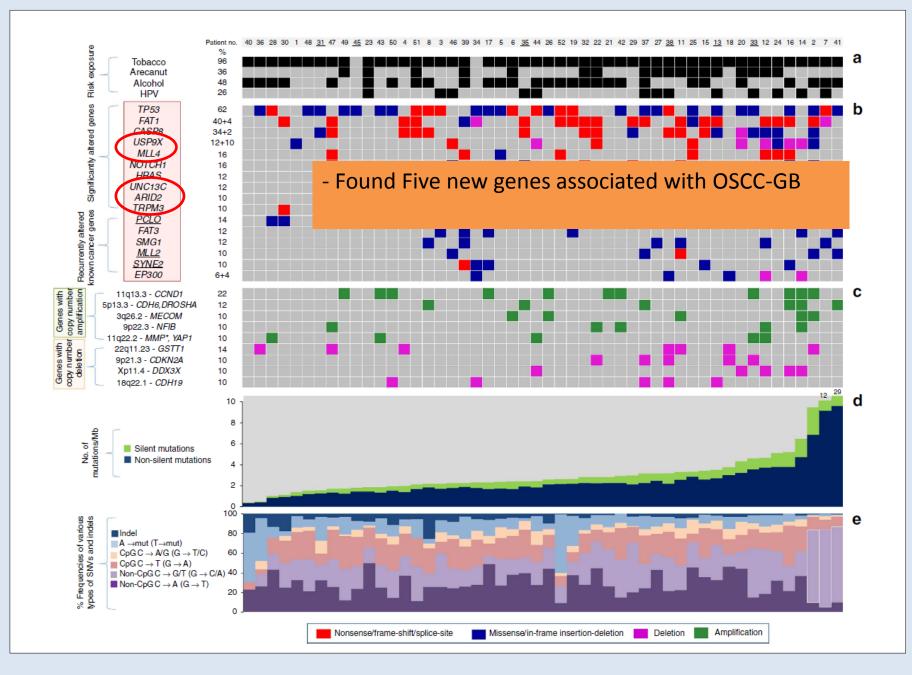


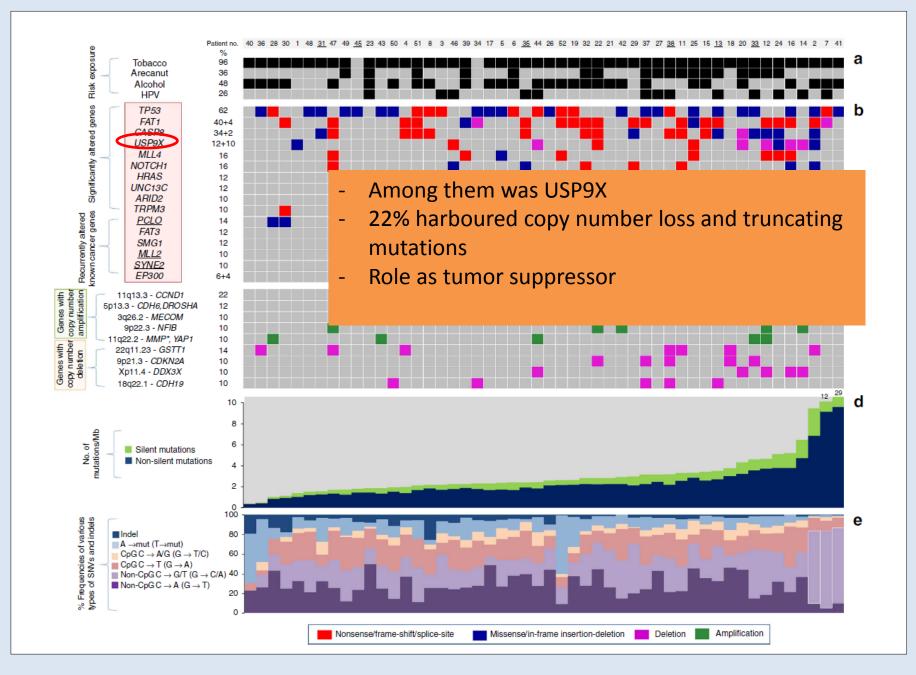

CONTEXT SPECIFIC ROLE OF DEUBIQUITYLASE ENZYME, USP9X, IN HEAD AND NECK CANCER


Devathri Nanayakkara Eskitis Institute for Drug Discovery Griffith University

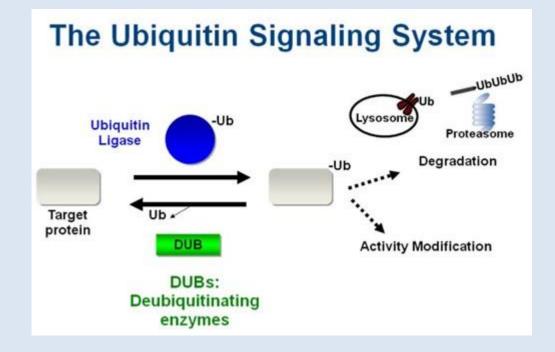




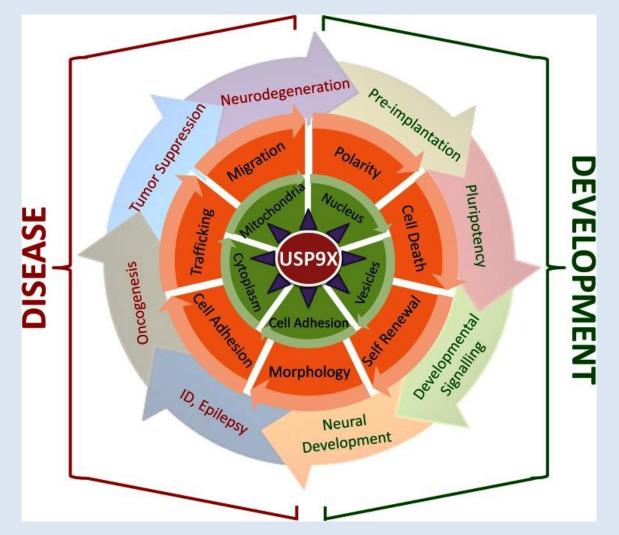

"Need to study the underlying molecular pathways unveiling potential detection markers and drug targets"


In a recent study,

Characterized the somatic mutation landscape of OSCC-GB



USP9X


- Deubiquitylating enzyme
 - Family of cysteine and metalloproteases

USP9X

- Deubiquitylating enzyme
 - Family of cysteine and metalloproteases

http://legacy.butler.edu/biology/faculty-staff/research-interests/jkowalski/research-in-the-kowalski-lab/

Murtaza et al, 2015

USP9X in cancer

USP9X in cancer

Therapeutics, Targets, and Chemical Biology

USP9X Downregulation Renders Breast Cancer Cells Resistant to Tamoxifen

Hendrika M. Oosterkamp¹, E. Marielle Hijmans¹, Thijn R. Brummelkamp¹, Sander Canisius¹, Lodewyk F.A. Wessels¹, Wilbert Zwart², and René Bernards¹

LETTERS

Canc Resear

Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival

Martin Schwickart¹*, XiaoDong Huang¹*, Jennie R. Lill², Jinfeng Liu³, Ronald Ferrando⁴, Dorothy M. French⁴, Heather Maecker⁵, Karen O'Rourke¹, Fernando Bazan⁶, Jeffrey Eastham-Anderson⁴, Peng Yue³, David Dornan⁷, David C. S. Huang⁴ & Vishva M. Dixit¹

ARTICLE

Received 6 Sep 2013 | Accepted 5 Nov 2013 | Published 2 Dec 2013

DOI: 10.1038/ncomms3873 OPEN

Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups

India Project Team of the International Cancer Genome Consortium¹

LETTER

doi:10.1038/nature11114

The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma

Pedro A. Pérez-Mancera¹, Alistair G. Rust², Louise van der Weyden², Glen Kristiansen³, Allen Li⁴, Aaron L. Sarver⁵, Kevin A. T. Silverstein⁵, Robert Grützmann⁶, Daniela Aust⁷, Petra Rümmele⁸, Thomas Knösel^{9,10}, Colin Herd¹¹, Derek L. Stemple¹¹, Ross Kettleborough¹¹, Jacqueline A. Brosnan⁴, Ang Li⁴, Richard Morgan⁴, Spencer Knight⁴, Jun Yu⁴, Shane Stegeman¹², Lara S. Collier¹³, Jelle J. ten Hoeve^{14,15}, Jeroen de Ridder¹⁴, Alison P. Klein⁴, Michael Goggins⁴, Ralph H. Hruban⁴, David K. Chang^{16,71,8}, Andrew V. Biankin^{16,71,8}, Sean M. Grimmond¹⁹, Australian Pancreatic Cancer Genome Initiative⁴, Lodewyk F. A. Wessels^{14,15}, Stephen A. Wood¹², Christine A. Iacobuzio–Donahue⁴⁴, Christian Pilarsky⁶*, David A. Largaespada²⁰*, David J. Adams³ & David A. Tuveson¹ Cancer Biology & Therapy 13:13, 1319–1324; November 2012; © 2012 Landes Bioscience

Genetic disruption of *USP9X* sensitizes colorectal cancer cells to 5-fluorouracil

Dennis R. Harris,¹ Alexandra Mims² and Fred Bunz^{1,2,*}

Cui et al. Cancer Cell International (2015) 15:4 DOI 10.1186/s12935-014-0149-x

PRIMARY RESEARCH

Open Access

EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells

Jing Cui¹⁺, Wendong Sun²⁺, Xuexi Hao², Minli Wei¹, Xiaonan Su¹, Yajing Zhang¹, Ling Su¹ and Xiangguo Liu^{1*}

OPEN CACCESS Freely available online

PLOS ONE

The SOX2-Interactome in Brain Cancer Cells Identifies the Requirement of MSI2 and USP9X for the Growth of Brain Tumor Cells

Jesse L. Cox¹⁹, Phillip J. Wilder¹⁹, Joshua M. Gilmore^{2,3}, Erin L. Wuebben¹, Michael P. Washburn^{2,3}, Angie Rizzino¹*

Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer

Shan Wang^a, Rahul K. Kollipara^a, Nishi Srivastava^a, Rui Li^b, Preethi Ravindranathan^b, Elizabeth Hernandez^b, Eva Freeman^b, Caroline G. Humphries^a, Payal Kapur^{b,c}, Yair Lotan^b, Ladan Fazli^d, Martin E. Gleave^d, Stephen R. Plymate^e, Ganesh V. Raj^b, Jer-Tsong Hsieh^{b,f}, and Ralf Kittle^{ra,f.g.h,1}

Original Article

Elevated expression of USP9X correlates with poor prognosis in human non-small cell lung cancer

You Wang^{1*}, Yu Liu^{1*}, Bo Yang¹, Hong Cao², Chun-Xu Yang¹, Wen Ouyang¹, Shi-Min Zhang¹, Gui-Fang Yang², Fu-Xiang Zhou^{1,3}, Yun-Feng Zhou^{1,3}, Cong-Hua Xie^{1,3}

USP9X in cancer

Therapeutics, Targets, and Chemical Bi

Breast cancer

USP9X Downregulation Render

Hendrika M. Oosterkamp¹, E. Marielle Hijmans¹, Thijn R. Brummelkamp¹, Sander Canisius¹, Lodewyk F.A. Wessels¹, Wilbert Zwart², and René Bernards¹

LETTERS

otes

Deubiquitinase USP9X tumour cell survival

Lymphoma

Martin Schwickart¹⁴, XiaoDong Huang¹⁴, Jennie R. Lill², Jinfeng Liu³, Ronald Ferrando⁴, Dorothy M. French⁴, Heather Maecker⁵, Karen O'Rourke¹, Fernando Bazan⁶, Jeffrey Eastham-Anderson⁴, Peng Yue³, David Dornan⁷, David C. S. Huang⁸ & Vishva M. Dixi¹

ARTICLE

Received 6 Sep 2013 | Accepted 5 Nov 2013 | Published 2 Dec 2013

DOI: 10.1038/ncomms3873 OPEN

Mutational landscape of gingivo-buccal

oral squamous cell **Oral cancer** recurrently-mutated series and molecular subgroups

India Project Team of the International Cancer Genome Consortium¹

LETTER

doi:10.1038/nature11114

The deubiquitinase USP9X suppresses pancreatic ductal adenocarcino Pancreatic cancer

Pedro A. Pérez-Mancera1, Alistair G. Rust2, Louise

Kevin A. T. Silverstein⁵, Robert Grützmann⁶, Danieta Aust, , retra kummete^{*}, 1 nomas Knosei^{***}, Conn Hera^{**}, Derk L. Stemple¹¹, Ross Kettleborough¹¹, Jacqueline A. Brosnan⁴, Ang Li⁴, Richard Morgan⁴, Spencer Knight⁴, Jun Yu⁴, Shane Stegeman¹², Lara S. Collier¹⁰, Jelle J. ten Hoeve^{14,5}, Jeroen de Ridder¹⁴, Alison P. Klein⁴, Michael Goggins⁴, Ralph H. Hruban⁴, David K. Chang^{10,71,81}, Andrew V. Biankin^{16,71,81}, Sean M. Grimmond¹⁹, Australian Pancreatic Cancer Genome Initiative⁴, Lodewyk F. A. Wessels^{14,15}, Stephen A. Wood¹², Christine A. Iacobuzio–Donahue^{4*}, Christian Pilarsky^{6*}, David A. Largaespada²⁰*, David J. Adams² & David A. Tuveson¹ Cancer Biology & Therapy 13:13, 1319–1324; November 2012; © 2012 Landes Bioscience

Genetic disrupt Colorectal cancer colorectal cancer cells to 5-fluorouraci

Dennis R. Harris,¹ Alexandra Mims² and Fred Bunz^{1,2,*}

Cui et al. Cancer Cell International (2015) 15:4 DOI 10.1186/s12935-014-0149-x

PRIMARY RESEARCH

Open Access

EHMT2 inhibitor BIX-CLOSE through PMAIP1-USP **Bladder cancer** bladder cancer cells

Jing Cui^{1†}, Wendong Sun^{2†}, Xuexi Hao², Minli Wei¹, Xiaonan Su¹, Yajing Zhang¹, Ling Su¹ and Xiangguo Liu^{1*}

OPEN a ACCESS Freely available online

PLOS ONE

The SOX2-Interactome in Prain Cancer Colls Identifies the Requirement of MSI2 an Brain Cancer Brain Tumor Cells

Jesse L. Cox¹⁹, Phillip J. Wilder¹⁹, Joshua M. Gilmore^{2,3}, Erin L. Wuebben¹, Michael P. Washburn^{2,3}, Angie Rizzino¹*

Ablation of the oncogenic transcription factor EPG by deubiquitinase inhibition **Prostate cancer**

Shan Wang^a, Rahul K. Kollipara^a, Nishi Srivastava^a, <mark>Rui Li⁻, итеетлi каvingranatnan⁻, Eiizabetn Hernangez⁻,</mark> Eva Freeman^b, Caroline G. Humphries^a, Payal Kapur^{b,c}, Yair Lotan^b, Ladan Fazli^d, Martin E. Gleave^d, Stephen R. Plymate^e, Ganesh V. Raj^b, Jer-Tsong Hsieh^{b,f}, and Ralf Kittler^{a,f,g,h,1}

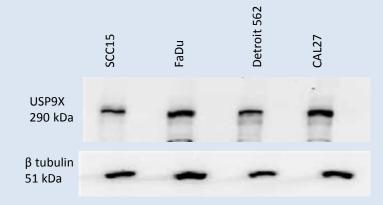
Original Article

Elevated expression of USPOY correlates with poor prognessis in

human non-small cell lung Lung cancer

You Wang^{1*}, Yu Liu^{1*}, Bo Yang¹, Hong Cao², Chun-Xu Yang¹, Wen Ouyang¹, Shi-Min Zhang¹, Gui-Fang Yang², Fu-Xiang Zhou^{1,3}, Yun-Feng Zhou^{1,3}, Cong-Hua Xie^{1,3}

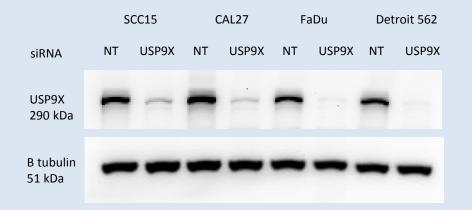
In this study,


Aims :

- To evaluate the role of USP9X in an *in vitro* system
- To elucidate the molecular mechanisms USP9X is involved in

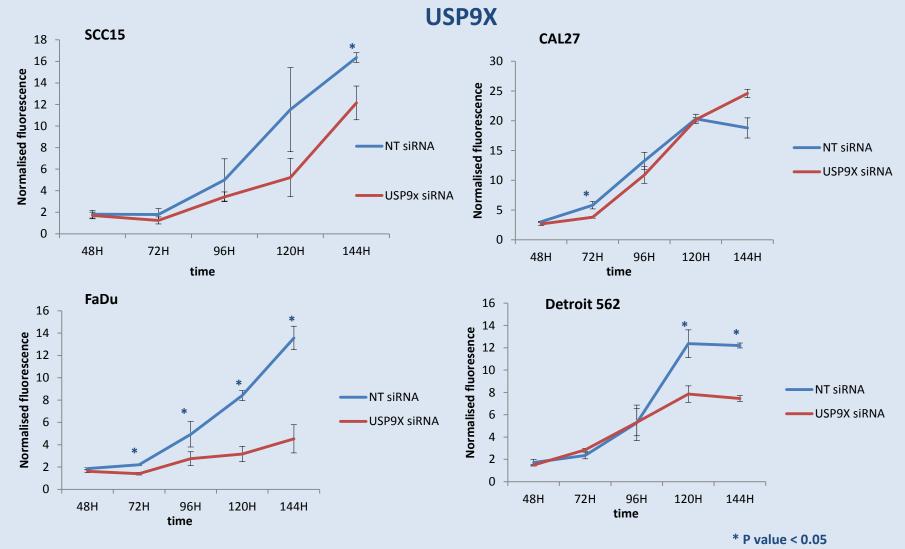
How?

- *In vitro* cell lines
 - SCC15, CAL27, FaDu and Detroit 562


Immunoblotting to probe for USP9X expression

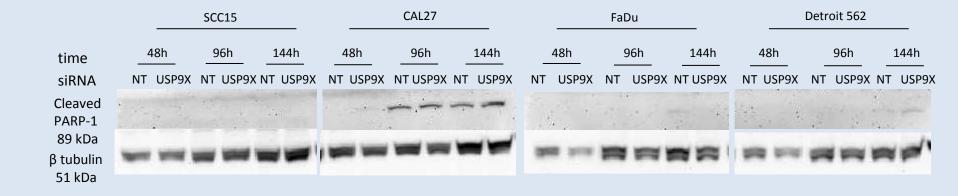
All 4 cell lines express USP9X

- Knockdown approach
 - siRNA


Immunoblotting to probe for USP9X protein levels 72 h after siRNA treatment

USP9X is efficiently knocked down in all four cell lines

- Effect on cell aspects
 - Cell proliferation
 - CyQUANT Assay


CyQUANT Analysis of cell proliferation following siRNA treatment to knockdown

In absence of USP9X, a decrease in cell numbers was observed

- Decrease in cell numbers,
 - Apoptosis?

Immunoblotting for cleaved PARP-1

No elevation in apoptosis detected upon depletion of USP9X

Decrease in cell numbers in absence of USP9X prompts a role of a

- Contradicts predicted oncosupressive role
- Context specific

- Contradicts predicted oncosupressive role
- Context specific
 - Pancreatic cancer

- Contradicts predicted oncosupressive role
- Context specific

- Pancreatic cancer

LETTER

doi:10.1038/nature11114

The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma

Pedro A. Pérez-Mancera¹, Alistair G. Rust², Louise van der Weyden², Glen Kristiansen³, Allen Li⁴, Aaron L. Sarver⁵, Kevin A. T. Silverstein⁵, Robert Grützmann⁶, Daniela Aust⁷, Petra Rümmele⁸, Thomas Knösel^{9,10}, Colin Herd¹¹, Derek L. Stemple¹¹, Ross Kettleborough¹¹, Jacqueline A. Brosnan⁴, Ang Li⁴, Richard Morgan⁴, Spencer Knight⁴, Jun Yu⁴, Shane Stegeman¹², Lara S. Collier¹³, Jelle J. ten Hoeve^{14,15}, Jeroen de Ridder¹⁴, Alison P. Klein⁴, Michael Goggins⁴, Ralph H. Hruban⁴, David K. Chang^{16,17,18}, Andrew V. Biankin^{16,17,18}, Sean M. Grimmond¹⁹, Australian Pancreatic Cancer Genome Initiative[†], Lodewyk F. A. Wessels^{14,15}, Stephen A. Wood¹², Christine A. Iacobuzio-Donahue⁴*, Christian Pilarsky⁶*, David A. Largaespada²⁰*, David J. Adams² & David A. Tuveson¹

- Contradicts predicted oncosupressive role
- Context specific

- Pancreatic cancer

LETTER

Tumor suppressor

The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma

Pedro A. Pérez-Mancera¹, Alistair G. Rust², Louise van der Weyden², Glen Kristiansen³, Allen Li⁴, Aaron L. Sarver⁵, Kevin A. T. Silverstein⁵, Robert Grützmann⁶, Daniela Aust⁷, Petra Rümmele⁸, Thomas Knösel^{9,10}, Colin Herd¹¹, Derek L. Stemple¹¹, Ross Kettleborough¹¹, Jacqueline A. Brosnan⁴, Ang Li⁴, Richard Morgan⁴, Spencer Knight⁴, Jun Yu⁴, Shane Stegeman¹², Lara S. Collier¹³, Jelle J. ten Hoeve^{14,15}, Jeroen de Ridder¹⁴, Alison P. Klein⁴, Michael Goggins⁴, Ralph H. Hruban⁴, David K. Chang^{16,17,18}, Andrew V. Biankin^{16,17,18}, Sean M. Grimmond¹⁹, Australian Pancreatic Cancer Genome Initiative[†], Lodewyk F. A. Wessels^{14,15}, Stephen A. Wood¹², Christine A. Iacobuzio-Donahue⁴*, Christian Pilarsky⁶*, David A. Largaespada²⁰*, David J. Adams² & David A. Tuveson¹

- Contradicts predicted oncosupressive role
- Context specific

- Pancreatic cancer

LETTER

Tumor suppressor

The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma

Pedro A. Pérez-Mancera¹, Alistair G. Rust², Louise van der Weyden², Glen Kr**RESEARCHPAPE** Kevin A. T. Silverstein⁵, Robert Grützmann⁶, Daniela Aust⁷, Petra Rümmele⁸, 1 Ross Kettleborough¹¹, Jacqueline A. Brosnan⁴, Ang Li⁴, Richard Morgan⁴, Spe Lara S. Collier¹³, Jelle J. ten Hoeve^{14,15}, Jeroen de Ridder¹⁴, Alison P. Klein⁴, M David K. Chang^{6,17,18}, Andrew V. Biankin^{16,17,18}, Sean M. Grimmond¹⁰, Austr Lodewyk F. A. Wessels^{14,15}, Stephen A. Wood¹², Christine A. Iacobuzio-Donahu David J. Adams² & David A. Tuveson¹

Cancer Biology & Therapy 15:8, 1042–1052; August 2014; © 2014 Landes Bioscience

Context-dependent function of the deubiquitinating enzyme USP9X in pancreatic ductal adenocarcinoma

Jesse L Cox, Phillip J Wilder, Erin L Wuebben, Michel M Ouellette, Michael A Hollingsworth, and Angie Rizzino*

- Contradicts predicted oncosupressive role
- Context specific

- Pancreatic cancer

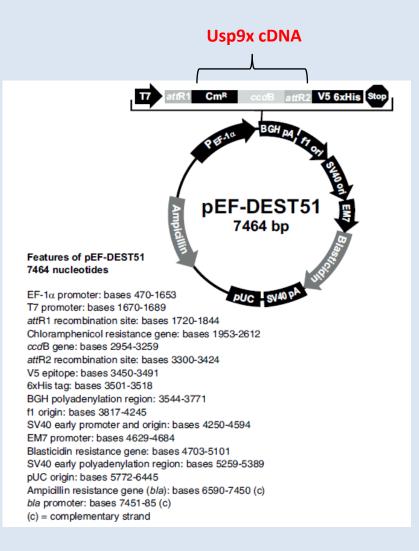
LETTER

Tumor suppressor

The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma

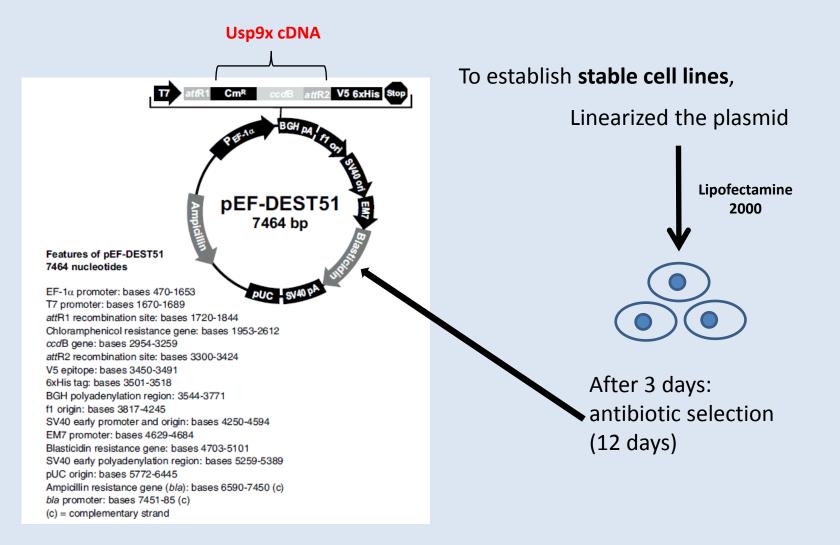
Pedro A. Pérez-Mancera¹, Alistair G. Rust², Louise van der Weyden², Glen Kr**RESEARCHPAPE** Kevin A. T. Silverstein⁵, Robert Grützmann⁶, Daniela Aust⁷, Petra Rümmele⁸, 1 Ross Kettleborough¹¹, Jacqueline A. Brosnan⁴, Ang Li⁴, Richard Morgan⁴, Spe Lara S. Collier¹³, Jelle J. ten Hoeve^{14,15}, Jeroen de Ridder¹⁴, Alison P. Klein⁴, M David K. Chang^{6,17,18}, Andrew V. Biankin^{16,17,18}, Sean M. Grimmond¹⁹, Austr Lodewyk F. A. Wessels^{14,15}, Stephen A. Wood¹², Christine A. Iacobuzio-Donahu David J. Adams² & David A. Tuveson¹

Cancer Biology & Thera

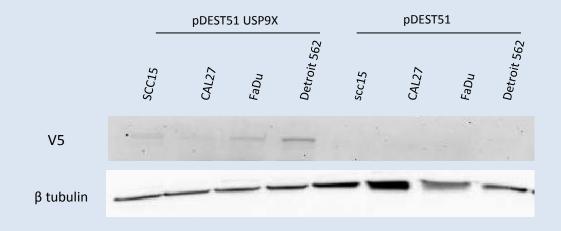

Jesse L Cox, Phillip J Wilder, Erin L Wuebben, Michel M Ouellette, Michael A Hollingsworth, and Angie Rizzino*

To further confirm,

• Overexpression of USP9X

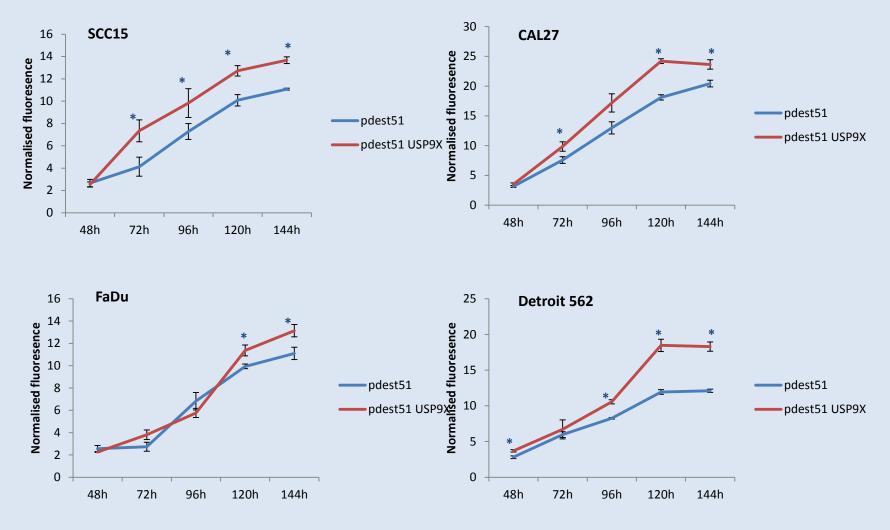

To further confirm,

• Overexpression of USP9X



To further confirm,

Overexpression of USP9X



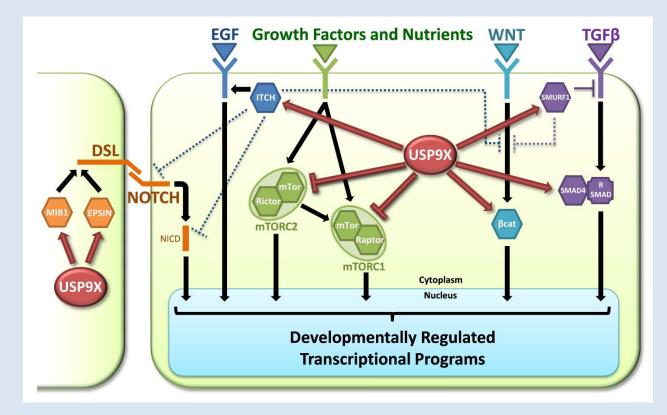
Immunoblotting to detect ectopic expression of USP9X

USP9X is ectopically expressed in all four cell lines

CyQUANT Analysis of cell proliferation following ectopic expression of USP9X

^{*} P value < 0.05

Ectopic USP9X protein expression increased cell proliferation


Cell numbers are directly proportional to level of USP9X protein

Cell numbers are directly proportional to level of USP9X protein

has an oncogenic role

Molecular mechanism regulated by USP9X

Molecular mechanism regulated by USP9X

Murtaza et al, 2015

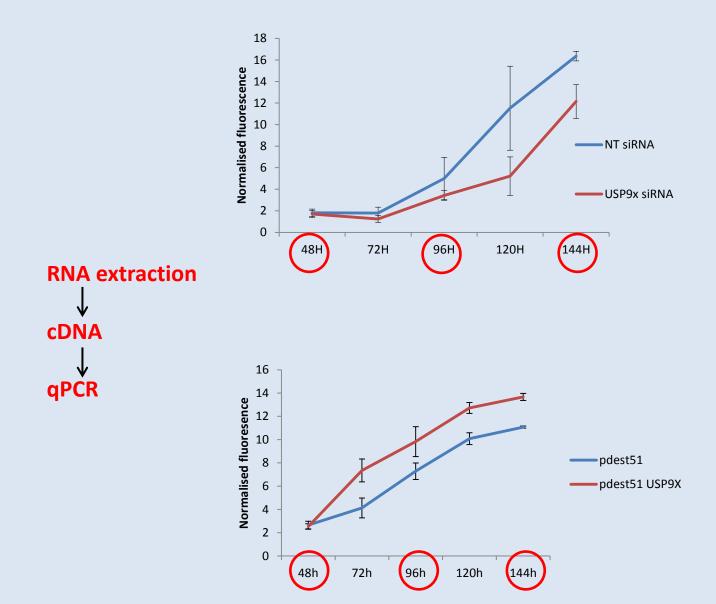
Molecular mechanism regulated by USP9X

- mTOR
- Wnt
- Notch
- Regulates cell proliferation
- Known USP9X substrates

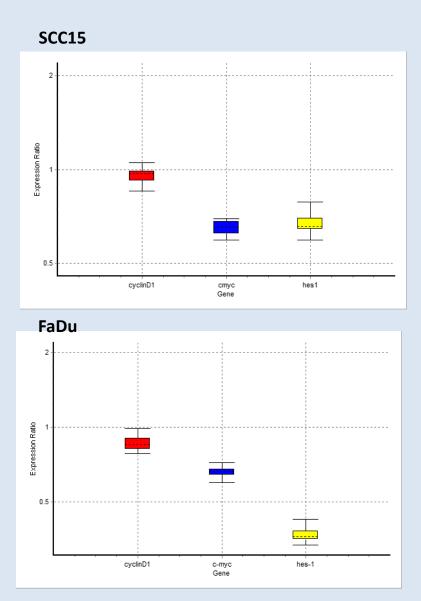
Molecular mechanism regulated by USP9X?

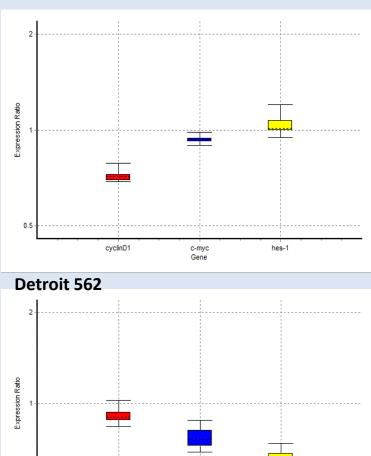
- mTOR
- Wnt
- Notch

CyclinD1, c-MYC, HES1


Molecular mechanism regulated by USP9X?

- mTOR
- Wnt

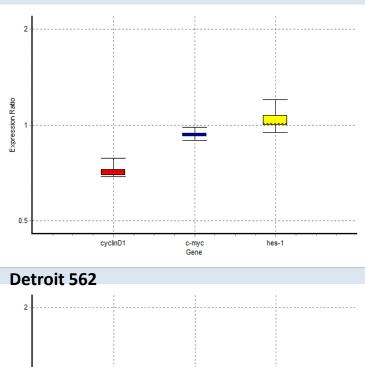

CyclinD1, c-MYC, HES1


– Notch

Quantitate the RNA levels by qPCR

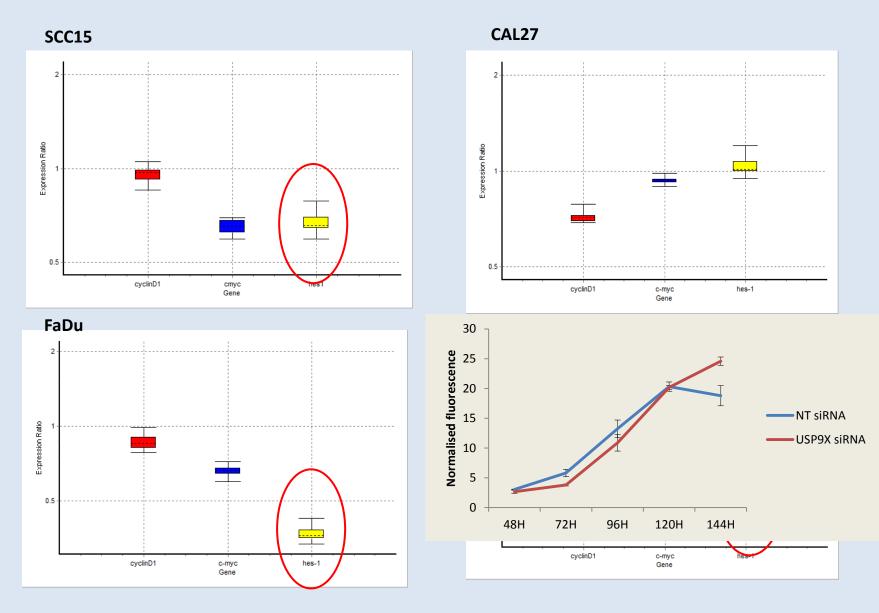
Fold change of target genes 144 h after knockdown of USP9X

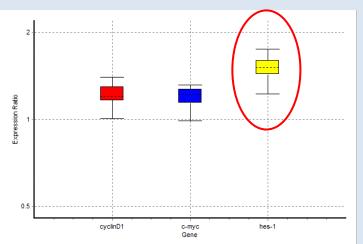
c-myc Gene hes-1


CAL27

0.5

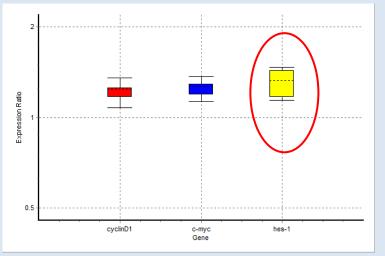
cyclinD1


Fold change of target genes 144 h after knockdown of USP9X

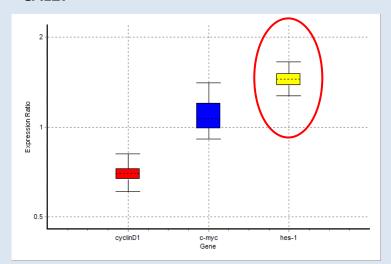


Sign 2 CyclinD1 C-myc Gene

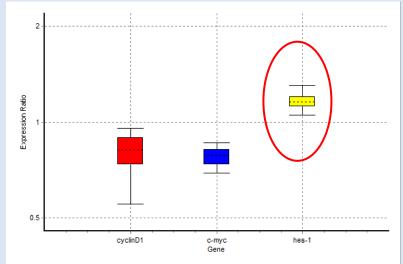
Fold change of target genes 144 h after knockdown of USP9X



Fold change of target genes 144 h after ectopic expression of USP9X



SCC15


FaDu

CAL27

Detroit 562

- Consistently *HES1* expression correlated with cell proliferation measured by CyQUANT assay
- USP9X seems to positively regulate notch pathway


- Consistently *HES1* expression correlated with cell proliferation measured by CyQUANT assay
- USP9X seems to positively regulate notch pathway

Hypothesis: USP9X regulates proliferation of head and neck cancer cells through notch pathway

Conclusions

- USP9X depletion caused a decrease in cell proliferation
- Ectopic expression of USP9X led to increase in cell proliferation
- USP9X positively regulates Notch pathway

ACKNOWLEDGEMENT

Stephen George Nicholas Saunders Wood lab members

Funding: Griffith University

THANK YOU!