Development of Whey Protein Based Edible Films with pH-controlled Release for Active Packaging

Derya Boyacı İzmir Institute of Technology Turkey

Food Safety and Packaging

- Microorganisms
- Chemicals
- O2
- Moisture
- Light

Functional Properties of Packaging Materials

Better shelf-life

and quality

Active and Antimicrobial Packaging

A packaging system releases active/antimicrobial compounds on the food surface to delay microbial growth.

✓ Extend shelf life

✓ Safe and High quality foods

Inhibit pathogenic bacteria
 Control spoilage
 Use minimum amounts of active compounds

Controlled Release Packaging (CRP) System

Innovative form of active packaging where antimicrobial and antioxidant compounds incorporated into a polymer and relase in a controlled manner.

Controlled Release

- Direct addition of antimicrobials
 - Excessive use !
 - Neutralization !
- Antimicrobial sprays or dips
 - Diffusion into center of food !

Controlled release antimicrobial packaging

- Prevent too high / too low concentration of active substances at food surface
- Prevent sensorial or toxicological problems (use lower amounts of active agent)

pH-Controlled Release in WPI films

- pH-triggering mechanism for controlled release of lysozyme from WPI films
- Can be triggered by adjusting the pH of food when antimicrobial activity is needed
 - Before cold storage
 - After freezing-thawing
 - Before transportation and market display

Edible Films and Antimicrobials

Whey Protein Isolate

- 20% of milk proteins
- pI ≈ 5.4
- One of the most commonly used biodegradable film material
- Forms transparent brittle films
- Good O₂, CO₂, lipid and aroma barrier properties

Lysozyme

- Hydrolases
- pI≈9,2
- Molecular weight ≈ 14.7 kDa
- Found in tears, mucus, egg white
- One of the most frequently used biopreservative
- Antimicrobial activity mainly on gram-positive bacteria

WPI films

Whey protein film (WPI)
WPI – Oleic acid blend film (9% oleic acid)
WPI – Beeswax composite film (30% beeswax)

⊖ : Free lysozyme

Potential Application

- Activation of Lyz based antilisterial activity
- Listeria monocytogenes Smoked fish processing (Smoked salmon)
 - MAP \rightarrow lost after opening the pack
 - Vacuum packaging has no absolute effect on *L. Monocytogenes*
 - pH-triggered release system can be employed as a hurdle to reduce the risk, especially during the storage of remaining food after the first consumption.

Produced WPI Films

Released LYS activity into buffer

- Released LYS activity on smoked salmon
- > In-vitro antimicrobial activity of films
- > Antimicrobial activity of the films coated on smoked salmon
- Morphological properties

LYS Activity of the Films

• LYS release at different pHs

LYS Activity of the Composite and Blend Films

Film Morphology

Control WPI film

WPI + Oleic acid

WPI + LYS

WPI + bees wax

Release on Smoked Salmon

Antimicrobial Activity against L. innocua

Film composition				Average zone area (mm ²) at 4°C		
LYZ (mg/c m ²)	OLE (%) ^a	BW (%) ^a	Acidification (5% citric acid)	24 h	48 h	
-	-	-	-	Partial zones	Partial zones	
-	-	-	+	Partial zones	Partial zones	
0.7	-	-	-	51.7 ± 8.5^{d}	63.5 ±13.9 ^c	
0.7	-	-	+	101.1 ± 15.3°	84.6 ± 22.5^{b}	
0.7	9	-	-	121.5 ± 14.9 ^b	93.9 ± 17.4 ^b	
0.7	9	-	+	141.6 ± 26.6^{a}	124.3 ± 32.7 ^a	
0.7	-	30	-	54.5 ± 7.4^{d}	55.6 ± 11.04 ^c	
0.7	-	30	+	58.5 ± 21.2^{d}	88.11 ± 55.6°	

Antimicrobial Activity against L. innocua

L.innocua counts during storage at 4°C (log CFU/g) ^a							
Day 0	Day 1	Day 3	Day 5	Day 7			
Uncoated							
$4.98 \pm 0.08^{a,A}$	$4.82 \pm 0.10^{ab,B}$	$4.82 \pm 0.10^{a,B}$	$4.80 \pm 0.11^{a,B}$	$4.83 \pm 0.13^{a,B}$			
WPI/OLE (control) ^b							
$4.92 \pm 0.10^{a,A}$	$4.72 \pm 0.10^{bc,C}$	$4.73 \pm 0.08^{b,C}$	$4.78 \pm 0.09^{a,BC}$	$4.84 \pm 0.11^{a,B}$			
WPI/OLE+LYS							
$4.92 \pm 0.08^{a,A}$	$4.68 \pm 0.07^{c,B}$	$4.69 \pm 0.15^{b,B}$	$4.74 \pm 0.12^{a,B}$	$4.49 \pm 0.12^{b,C}$			
WPI/OLE (acidified)							
$4.97 \pm 0.04^{a,A}$	$4.84 \pm 0.11^{a,B}$	$4.77 \pm 0.13^{ab,B}$	$4.80 \pm 0.12^{a,B}$	$4.57 \pm 0.09^{b,C}$			
WPI/OLE+LYS (acidified)							
$4.97 \pm 0.07^{a,A}$	$4.49 \pm 0.13^{d,B}$	$4.45 \pm 0.13^{c,BC}$	$4.27 \pm 0.19^{b,BC}$	$4.24 \pm 0.15^{c,C}$			

Conclusion

- LYS release mechanism based on acidification of the film was tested
- The films were successfully applied on smoked salmon slices
- Activation of edible films by consumer before consumption or after for the remaining part of the food is possible
- To optimize the concentration of LYS and increase the efficieny of film activity, further food applications are needed.

