MICROBIAL BIOTRANSFORMATION OF VOLATILE OILS

Deepen Pardeshi

Pharmaceutical Analysis

Bombay College Of Pharmacy, Mumbai

Index

Introduction

Material and Methods

Results

Conclusion

Future Aspects

References

Microbial Biotransformation

Chemical reaction performed by micro-organisms and catalyzed by the enzymes within the microbial cell.

It depends on nature of micro-organism and nature of substrate.

Industrial applications

- Wine and Beer industry
- Ayurvedic medicines eg. Asava and aristha
- Antibiotics e.g *Penicillium notatum*⁴
- Perfumery:

Biotransformation by bacteria, fungi and yeast of compounds such as linalool, cineole and alpha pinene to their respective epoxides, alcohols and diols, aldehydes, ketones and acids etc.

Experimental:

Aim: to study the effect of fermentation by *S. cerevisiae* on different different volatile oil component.

Microbe used

Saccharomyces cerevisiae is commonly known as yeast Widely used in Brewing and Bakery industry

ATCC no. confirmed by NCCS Pune- 204508

Substrates

Substrates used are:

Whole essential oils

- Clove oil
- orange peel oil (Extracted by Hydrodistillation)

Oil components

- Vanillin
- Menthol

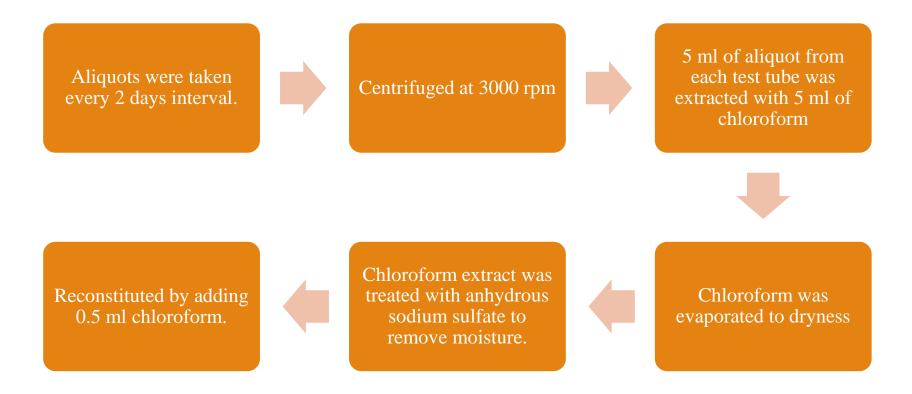
Crude powder

• Ajowan powder (Crude powder was used)

Materials and methods:

Preparation of media: The 3 % Sabouraud dextrose broth was prepared and sterilized.

Inoculation of YEAST: Inoculation of *Saccharomyces cerevisiae* into the culture media

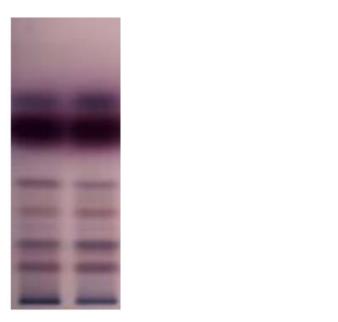

Addition of substrates:

- Solids: added 0.1 to 0.5 % W/V(Alcohol)
- Oily Liquids: added in 0.1 to 0.5% V/V(using tween 80 surfactant)

Incubation : at 37° C for the period of 10 days

Analysis : Using HPTLC method of analysis

Analysis :

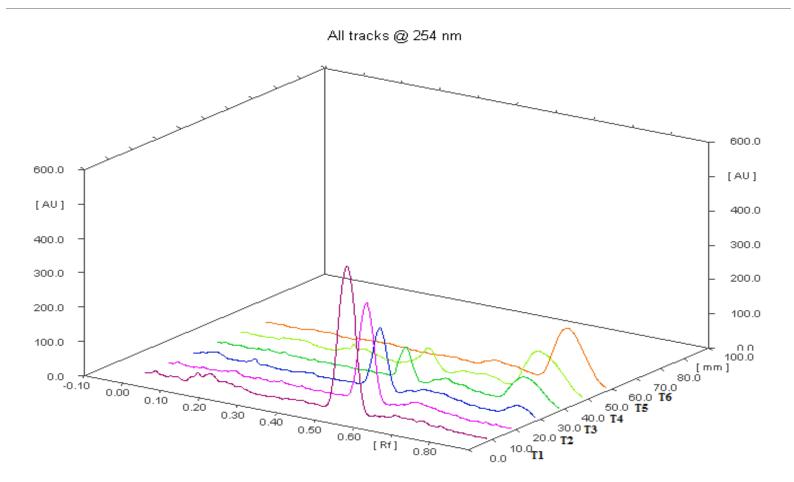


Why Chloroform?

Immiscible in aqueous phase

Adequate solubility of all substrates

Changes in orange oil and Cove oil


Orange peel oil

Clove oil

HPTLC

- TLC Plate silica gel 60 F254 coated aluminim plates
- Sample applicator- CAMAG LINOMAT 5
- Scanner- CAMAG SCANNER 3
- Chromatograph Plate Development
 Mobile phase- Hexane: ethyl acetate: glacial acetic acid
 Proportion (65:35:5)

3D Chromatogram of vanillin biotransformation

track	Incubation period
T1	0 days
Τ2	2 days
Т3	4 days
Τ4	6 days
т5	8 days
Т6	10 days

Peak Table

Ггаск	peak	Start Rf	Max Rf	Max Height	Max %	End Rf	End Height	Area	Area %
	peen								
1	1	0.45	0.52	420.1	84.41	0.58	0.3	14928.7	90.08
2	1	0.44	0.51	283	88.4	0.56	0.4	8961.4	84.78
3	1	0.53	0.56	111.8	4.09	0.57	11.5	172.1	2.02
3	2	0.79	0.84	27.6	9.55	0.88	6.7	1111.8	13.07
4	1	0.54	0.59	24.6	12.24	0.62	13.9	846.3	10.78
	-	0.70			25.40	0.00		4040 7	54.00
4	2	0.72	0.8	71.4	35.49	0.88	0.9	4312.7	54.92
5	1	0.51	0.53	16	6.16	0.68	0	554.1	4.34
J	1	0.51	0.55	10	0.10	0.08	0	554.1	4.54
5	2	0.79	0.81	111.4	42.94	0.88	6.5	7934.4	62.13
					-				
6	1	0.54	0.6	19.3	11.32	0.62	13.7	661.3	6.7
6	2	0.76	0.78	151.1	88.68	0.88	1.2	9212.9	93.3

Result and Discussion

Track of incubation period upto2 days (Track 1 and 2) shows no change in TLC pattern

A second peak is observed after incubation period of 4 days

As concentration of substrate decreases the concentration of product increases

Conclusion

- •The yeast Saccharomyces cerevisiae is capable of converting vanillin to more simple compound which can prove to be an important starting material for new flavours.
- •This is an important finding for the point of view of flavouring properties of product of biotransformation.

Future aspects

Biotransformation can be used as tool to explore new and cost effective methods of bio-catalysis using selected metabolic pathways from cells.

References

- , W. A. Duetz, H. Bouwmeester, J. B. Beilen, B. Witholt, Biotransformation of limonene by bacteria, fungi, yeasts, and plants Appl Microbiol Biotechnol. 2003 May;61(4):269-77. Epub 2003 Mar 15
- Mohamed-Elamir F. Hegazy, T. A. Mohamed, A. I. ElShamy, A. H. Mohamed, U. A. Mahalel, Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review Journal of Advanced Research (2015) 6, 17–33
- Demyttenaere J. C., Belleghem K., De Kimpe N ; Biotransformation of (R)-(+)- and (S)-(-)-limonene by fungi and the use of solid phase microextraction for screening; Phytochemistry 2001 May;57(2):199-208

References

- Guat Kheng Khor and Mohamad Hekarl Uzir; Saccharomyces cerevisiae: a potential stereospecific reduction tool for biotransformation of monoa nd sesquiterpenoids; Yeast 2011; 28: 93– 107, Published online 11 October 2010 in Wiley Online Library (wileyonlinelibrary.com)
- A. Geerlings, F. J. Redondo, A. Contin, J. Memelink, R. van der Heijden · R. Verpoorte; Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast.
- 6. CHEM 333L, Organic Chemistry Laboratory Revision 2.1; Steam Distillation of an Essential Oil

Thank you