

Small change, big difference: the discovery of drug candidate for anti-Schistosomiasis japonicum

Shandong University, P.R.China

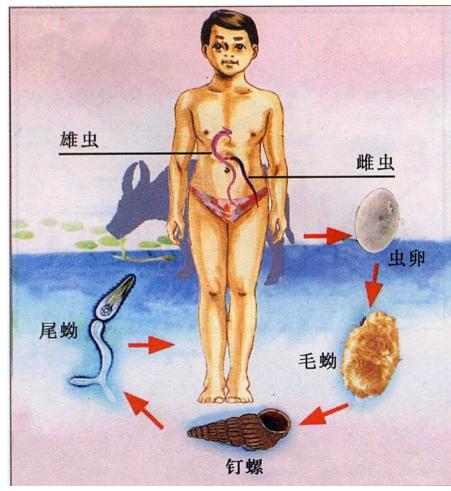
Dequn Sun

dequn.sun@sdu.edu.cn



how is the schistosomiasis?

- three main schistosomes caused schistosomiasis
 - Schistosoma mansoni
 - Schistosoma japonicum
 - Schistosoma haematobium

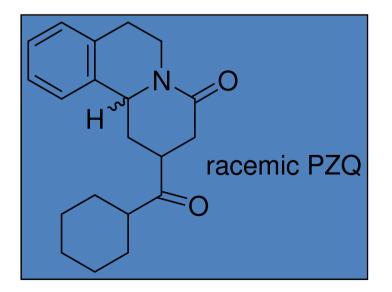


schistosomiasis over the world

How the Schistosoma affect the people and animals

The schistosomiasis due to Schistosoma japonicum in china is highly harmful

- relatively neglected tropical disease, and it has long been a major public health problem in China and other subtropical countries
 - schistosomiasis was endemic in 10 provinces, 100 million people are at risk of infection and over 10 million people were infected

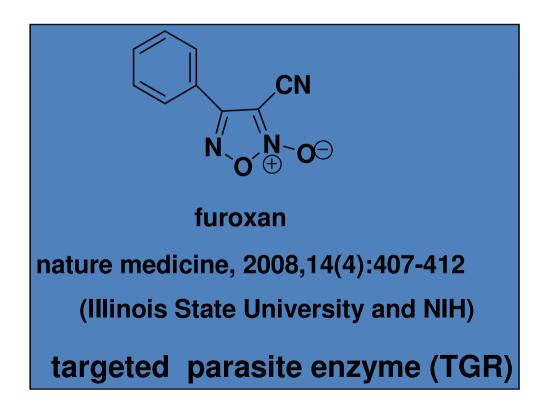


The only drug for schistosomiasis in clinically

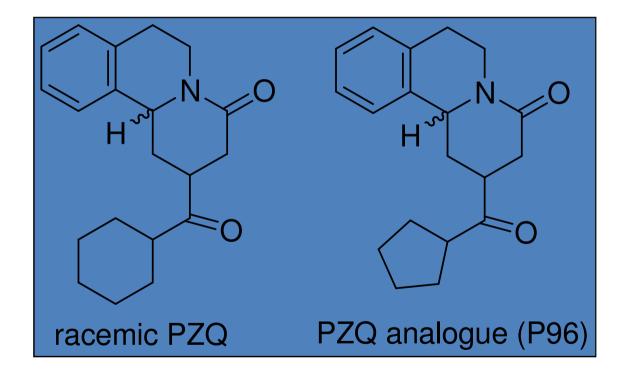
 Praziquantel (PZQ) is currently the first choice of drug for treatment of Schistosoma mansoni and Schistosoma haematobium infection and is the only drug for treatment of Schistosoma japonicum infection

fatal defects of PZQ

•Has high activity to adult worms, but very low efficacy against juvenile forms of schistosome

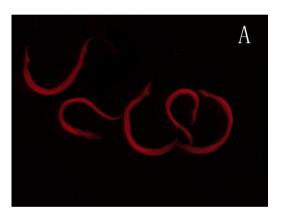

•Before PZQ can kill the adult worms, the worms already give eggs, therefore, PZQ can not cure the schistosomiasis completely, this is the only reason that schistosomiasis has currently become a lasting infectious diseases

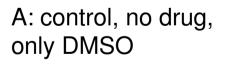
•Action mechanism/target of PZQ is unclear, which make it difficult to find drug candidate with novel structure for schistosomiasis

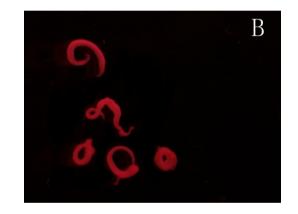

The way to dig out the drug leads

• Screen from old compounds:

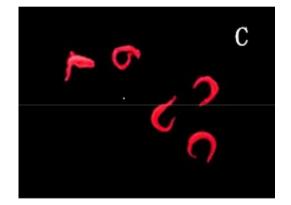
Find PZQ analogues as drug leads




Big difference


Table 1. MLC of compound P96 and PZQ against adult and juvenileS. japonicum in vitro.

Compound	P96	PZQ
MLC (µM) for juvenile S. japonicum	15	>160 (no effect)
MLC (µM) for adult S. japonicum	25	80



B: compound P96

C: PZQ

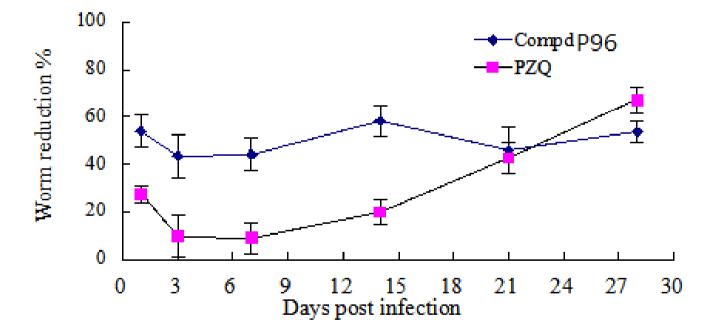


Table 2. In vivo activity against different stages of S. japonicumin mice

Days post infection	Worm number $(\pm s)$ /worm reduction%				
(200mg/kg)	Compound P96	PZQ			
Control*	51.0±2.1/0.0	51.0±2.1/0.0			
1	23.5±3.5/53.9	37.0±1.9/27.5			
3	28.8±4.6/43.5	46.3±4.6/9.8			
7	28.5±3.5/44.2	46.4±3.4/9.0			
14	21.3±3.2/58.2	41.3±2.7/19.9			
21	27.6±5.0/45.9	29.2±3.3/42.7			
28	23.6±2.3/53.6	16.7±2.9/67.1			

*: Mice were given equal volume of corn oil.

Table 3. In vivo activity in mice against juvenile S. japonicumat different doses of compound **P96** (single oral administration).

Dose (mg/kg)	Worm number								Average worm reduction%
× 8 0/-	1	2	3	4	5	6	7	8	
100	30	27	22	26					48.1%
200	22	25	20	24	26	14	21		56.2%
400	23	18	17	23	19	20	18	21	60.0%
600	17	14	15	16	17	14	15	17	68.4%

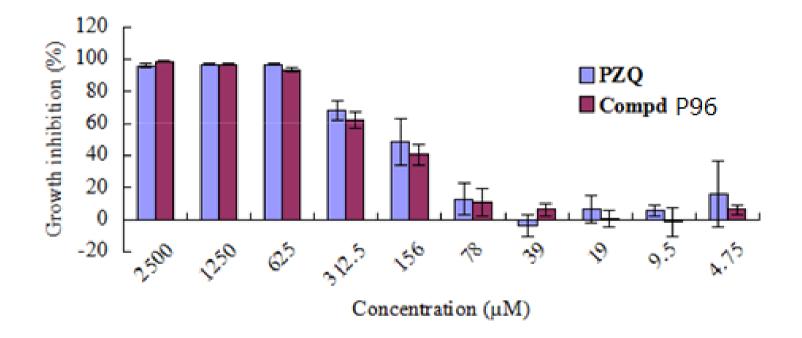
--: refers to death

the average worm reduction rate rose up from 48.1% to 68.4% with the dose raised from 100 mg/kg to 600 mg/kg, while the mortality of mice reduced remarkably (50.0% death rate for 100 mg/kg group, 12.5% for 200 mg/kg group, and 0% for both 400 mg/kg and 600 mg/kg groups

Table 4. Cross-resistance study of compound P96

	Warma		24h		48h		72h	
Group	Worm	Conc.(µM)	Worm	Total vitality score/	Worm	Total vitality score/	Worm	Total vitality score/
	number		survival%	vitality reduction%	survival%	vitality reduction%	survival%	vitality reduction%
Control*	5	0	100	13.0/13.0	100	13.0/13.0	100	13.0/13.0
PZQ-1	5	80×2	100	4.0/73.0	90.0	3.0/80.0	90.0	3.0/80.0
PZQ-2	5	80×4	90.0	4.0/73.0	90.0	4.0/73.0	80.0	4.0/73.0
PZQ-3	5	80×8	80.0	2.0/86.0	60.0	1.0/93.0	20.0	1.0/93.0
P96	5	25	80.0	4.0/73.0	60.0	3.0/80.0	20.0	1.0/93.0

*: DMSO 3 μ L was added with no compound.


Table 5. In vivo activity in rabbit against juvenile andadult S. japonicum of compound P96

~ 1			Wor	m number	$\left(\frac{1}{x}\pm s\right)$	Worm	Egg number (-+-)	
Compd		Dose (mg∕kg)×			Total	reduction	Egg number $(\frac{1}{\chi}\pm s)$	-s) Egg
	infection	Days (once a day)	ి	Ŷ	number	%	in liver (1 g)	reduction%
Control	-	-	90.0±1.4	78.0±2.8	168.0±4.2	-	1633.3±1044.2	-
DOC	14d	150×2	35.5±19.1	28.0±8.5	63.5±27.6 b	62.2	225.5±89.3	86.2
P96	28d	150×2	10.5±7.8	3.5±2.1	14.0±9.9 🚆	91.7	37.0±8.7	97.7
770	14d	150×2	66.0±6.9	71.7±0.6	137.7±7.2 ª	18.4	996.8±16.5	38.9
PZQ	28d	150×2	1.5±0.7	1.0±0.0	2.5±0.7	98.5	48.2±9.2	97.1

 $^{a:}**P < 0.01$ the same dose for different days after infection; $^{b:}**P < 0.01$ different dose for the same days after infection.

Figure 1. Growth inhibition of PZQ and compound P96 to normal human liver line (L02)

Compound P96 displayed similarly low toxicity with PZQ

Other preclinical study of P96 as a drug candidate are under going

Research group

