

VOLUNTARY INTAKE AND PALATABILITY INDICES OF PEDI GOATS FED TANNINIFEROUS ACACIA KARROO LEAF MEAL BY CAFETERIA METHOD BROWN D*, NG'AMBI J W AND NORRIS D (UNIVERSITY OF LIMPOPO, SOUTH AFRICA)

Acacia karroo tree

Outline

- 1. Background
- 2. Objective
- **3. Methodology**
- 4. Results and discussion
- **5. Conclusion and recommendation**

Background

- ✓ Goats play multiple roles in the support of the poor in the communal areas of S.A
- ✓ However, their productivity is hindered by shortage of good quality feed (dry season)
- ✓ Browse trees legumes and shrubs have potential as alternate sources of feed for domestic livestock in communal rangeland (Solomon et al., 2007a)
- ✓ Acacia karroo (AK) is an important leguminous tree in communal rangelands and can provide enough nutrients for goats (Aganga et al., 2000)
- ✓ However, AK contains ANFs such as condensed tannins (Ngambu et al., 2012)

AK – National Weed List

– Encroacher of the natural rangeland

- ✓ CTs may lower feed intake (FI) by reducing palatability (Reed, 1995)
- ✓ Reduction in FI and palatability is associated with the astringency in the mouth of the animal (drying /puckering sensation)
- ✓ "Palatability" is the stimulation to eat aroused by the feed (physical/chemical) ((Baumont, 1996)
- ✓ DMI is also influenced by palatability (Tamir and Asefa, 2009)
- ✓ Information on DMI and palatability of tannin-rich diet is equivocal.

✓ The objective of this study was to determine the effects of dietary level of *Acacia karroo* leaf meal on voluntary feed intake, palatability and preference rankings of Pedi goats

METHODOLOGY

- ✓ The study was conducted at the University of Limpopo experimental farm
- ✓ 5 goats were housed individually with 5 feeding trough each, in a cafeteria feeding approach described by Larbi *et al.* (1993)
- ✓ Each goat had free access to the diet of their choice and position of trough was randomized each day to avoid "habit reflex"
- ✓ The experiment lasted for 23days , consisting of a 15day adaptation period and 8 days of data collection

EXPERIMENTAL DIETS

Diet code	Diet description
S80A20	A mixture of 80% Seteria hay and 20% Acacia karroo
S75A25	A mixture of 75% Seteria hay and 25% Acacia karroo
S70A30	A mixture of 70% Seteria hay and 30% Acacia karroo
S60A40	A mixture of 60% Seteria hay and 40% Acacia karroo
S50A50	A mixture of 50% Seteria hay and 50% Acacia karroo

- ✓ DM, OM, CP and Ash (AOAC,2005)
- ✓ Fibre components (Van Soest et al., 1994)
- ✓ Total phenolic contents (Folin-Ciocalteus method and expressed as tannic acid equivalent-Makkar et al., 1993)
- ✓ CTs content (Butanol-HCl method and expressed as leucocyanidin equivalent- Porter et al., 1993)
- ✓ Mineral elements were analyzed by AOAC method using the Atomic Absorption Spectrophotometer

MEASUREMENT AND STATISTICAL ANALYSIS

- ✓ A daily RPI was calculated for each diet by dividing the amount consumed by that of the highest value, and multiplying the result by 100 (Larbi *et al.*, 1993)
- ✓ These daily RPI values obtained for each diet were subjected to ANOVA (SAS, 2008) with feeds as treatments and individual animals as replicates in a CRD.
- ✓ The diets were ranked based on these calculations with the highest consumption value being the most preferred and vice versa

Results and discussion

Nutritive value of dietary mixtures of *Seteria verticillata* grass hay and *Acacia karroo* leaves

Nutrient	$S_{80}A_{20}$	$S_{75}A_{25}$	$S_{70}A_{30}$	$S_{60}A_{40}$	$S_{50}A_{50}$	SEM
DM	95.24 ^c	95.86 ^b	94.05 ^e	95.21 ^d	97.01 ^a	0.000
OM	91.52 ^e	91.56 ^d	91.60 ^c	91.67 ^b	91.75 ^a	0.000
СР	8.90 ^e	9.16 ^d	9.34°	9.84 ^b	10.37 ^a	0.13
Ash	8.47	8.43	8.39	8.32	8.24	0.11
Fat	1.12 ^e	1.20 ^d	1.28 ^c	1.45 ^b	1.61 ^a	0.04
ADF	47.03 ^a	46.12 ^b	45.21 ^c	43.39 ^d	41.57 ^e	0.67
NDF	69.90 ^a	67.91 ^b	65.91 ^c	61.93 ^b	57.94 ^e	0.42
СТ	0.41 ^e	0.51 ^d	0.61°	0.82 ^b	1.02 ^a	0.017
TP	0.39 ^e	0.49 ^d	0.58 ^c	0.78 ^b	0.98 ^a	0.003

Relative Palatability Index (RPI) rankings and average daily intake (g/kg W^{0.75}) of experimental diets by Pedi goats using cafeteria method

Diet	DMI (g/kg W ^{0.75})	RPI (%)	Preference ranking
S ₈₀ A ₂₀	14.59 ^c	23.65 ^c	5
S ₇₅ A ₂₅	20.00 ^{bc}	31.97 ^c	4
S ₇₀ A ₃₀	30.14 ^b	53.07 ^b	3
S ₆₀ A ₄₀	44.16 ^a	81.83ª	2
S ₅₀ A ₅₀	52.38ª	96.91ª	1
SEM	4.413	5.725	

Prediction of dry matter intake (DMI) and relative palatability index (RPI) of Pedi goats offered mixtures of *Seteria verticillata* grass hay and *Acacia karroo* leaf meal

Factor	Y-variable	Formulae	r ²	Ρ
DMI (g/goat/day)	RPI	Y =1.702x + 2.601	0.71	<0.0001
OM (%)	RPI	Y = 1.821x + 2.601	0.71	<0.0001
CP (%)	RPI	Y = 8.913x + 9.983	0.72	<0.0001
NDF (%)	RPI	Y = 2.463x - 1.135	0.71	<0.0001
ADF (%)	RPI	Y = 3.021x + 0.412	0.71	<0.0001
СТ	RPI	Y =34.047x + 28.643	0.61	<0.0001
ТР	RPI	Y = 34.353x + 30.266	0.58	<0.0001

IMPLICATION

- ✓ High voluntary DMI of Diets $S_{60}A_{40}$ and $S_{50}A_{50}$ suggests that tannin-rich diets do not always depress intake
- ✓ Reduced palatability in tannin-rich plants may be related to the type than the amount of tannins present in browse species
- ✓ Nutrient content could be a definitive predictor of intake and palatability of forage-rich diets
- Palatability studies could be used in designing supplemental feeding programs for ruminants in the tropics

THANK YOU!