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Artificial satellites

What was the first artificial satellite?
Sputnik I was the first artificial Earth satellite. It was 58 cm diameter polished metal
sphere, with four external radio antennas to broadcast radio pulses. It was launched by
the Soviet Union into an elliptical low Earth orbit on 4 October 1957.

Sputnik I
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Current situation of satellites orbiting the Earth

Current data

According to NASA, the total number of launched satellites is 7463. (July, 1st 2016)
http://nssdc.gsfc.nasa.gov/nmc/spacecraftSearch.do

Discipline
The number of satellites (s/c) can be cataloged in different disciplines:

I Astronomy 319 s/c.
I Earth Science 946 s/c.
I Planetary Science 316 s/c.
I Solar and Space Physics 857 s/c.
I Human Crew 329 s/c.
I Life Science 97 s/c.
I Micro-gravity 72 s/c.

I Communications 2132 s/c.
I Engineering 419 s/c.
I Navigation and GPS 475 s/c.
I Resupply-Repair 215 s/c.
I Surveillance and Military 2299 s/c.
I Technology Applications 268 s/c.
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Altitude classifications for geocentric orbits

Altitude classifications
Another way to classify the satellites is according to the altitude of the satellite with
respect to the Earth surface.

I Low Earth Orbits (LEO): altitudes up to 2, 000 km.
I Medium Earth Orbits (MEO): altitudes from 2, 000 km. up to 35, 786 km.
I Geostationary Orbits (GEO): altitudes of 35, 786 km. (ecc = 0, inc = 0◦)

I International Space Station (ISS) is in LEO region.
The altitude is about 415 km.
The velocity is 7.7 km/s.

I Other missions: Earth observation satellites, spy
satellites...
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Altitude classifications for geocentric orbits

Altitude classifications
Another way to classify the satellites is according to the altitude of the satellite with
respect to the Earth surface.

I Low Earth Orbits (LEO): altitudes up to 2, 000 km.
I Medium Earth Orbits (MEO): altitudes from 2, 000 km. up to 35, 786 km.
I Geostationary Orbits (GEO): altitudes of 35, 786 km. (ecc = 0, inc = 0◦)

I Global Positioning System (GPS) is in MEO region.
The altitude is about 20, 200 km.
The velocity of the satellites is 3.8 km/s.

I Other missions: Navigation (GPS, Galileo),
communication...

5/25



Introduction Motivation Methodology Results Applications Conclusions

Altitude classifications for geocentric orbits

Altitude classifications
Another way to classify the satellites is according to the altitude of the satellite with
respect to the Earth surface.

I Low Earth Orbits (LEO): altitudes up to 2, 000 km.
I Medium Earth Orbits (MEO): altitudes from 2, 000 km. up to 35, 786 km.
I Geostationary Orbits (GEO): altitudes of 35, 786 km. (ecc = 0, inc = 0◦)

I Meteosat is in GEO region.
The altitude is about 35, 786 km.
The velocity is 3.07 km/s.

I Other missions: Weather forecast, meteorology,
communications...
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What is Space Debris?

Space Debris
Space debris are all man-made objects in orbit around the Earth which no longer
serve a useful purpose. These objects are non-active satellites, fragments of satellites,
rocket parts, remains of explosions or collisions, etc. of all sizes and all chemical
compositions.

Space debris orbiting around the
Earth. Three main congested re-
gions: GEO, MEO, LEO.
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Space Debris orbiting the Earth

The presented satellite missions can contribute to the huge collection of Space Debris
orbiting the Earth through different ways:

I During the launch process.
I Intentional destruction of satellites. On January, 11th 2007 China destroyed the

weather satellite Fengyun-1C via an anti-satellite (ASAT) device.
I
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Space Debris orbiting the Earth

The presented satellite missions can contribute to the huge collection of Space Debris
orbiting the Earth through different ways:

I During the launch process.
I Intentional destruction of satellites. On January, 11th 2007 China destroyed the

weather satellite Fengyun-1C via an anti-satellite (ASAT) device.
I Non-intentional explosions or collisions between satellites. The non-intentional

collision between Iridium 33 and Kosmos-2251 on February, 10th 2009.
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Space Debris orbiting the Earth

Space Debris travel at speeds up to 7.8 km/s, fast enough to damage a satellite or a
spacecraft.

A sample of what Space Debris can do
This 10.2 cm thick aluminum block was hit by a 2.5 cm, 15 gr plastic cylinder at 6.8
km/s. The plastic went almost all the way through the block, showing even plastic can
damaged at orbital speeds and most space debris is metal, not plastic.
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Space Debris orbiting the Earth

Space Debris travel at speeds up to 7.8 km/s, fast enough to damage a satellite or a
spacecraft.

A sample of what Space Debris can do
This 1.2 cm aluminum sphere striking a 18 cm thick aluminum plate at a velocity of 6.8
km/s, giving some idea of the destructive power of hyper-velocity impacts.
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Space Debris orbiting the Earth

Space Debris travel at speeds up to 7.8 km/s, fast enough to damage a satellite or a
spacecraft.

A sample of what Space Debris can do
A tiny piece of flying space debris hits the ISS last June, 12th.
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Current situation of space debris

I More than 21, 000 space
debris larger than 10 cm.

I Approx. 500, 000 particles
between 1 and 10 cm.

I More than 100 million
pieces smaller than 1 cm.

Motivation
? Where will space debris be located after 100 years?

? Does the area-to-mass ratio of space debris affect its temporal evolution?

? Will there be any stable region of space debris?
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Methodology

Objective: Computation of the time-evolution of thousands of pieces of space
debris to extract global properties, stable regions, etc.

Problem: The numerical approach is fast, but not enough to compute the
evolution of thousands of pieces at the same time.

Solution: The analytical approach helps to strongly reduce the computational
cost. Furthermore, it helps to study the periods of the eccentricity and
inclination, to understand the influence of the area to mass ratio, etc.

Tools : I Hamiltonian formulation.
I Poincaré’s variables.

10/25



Introduction Motivation Methodology Results Applications Conclusions

Numerical simulations

We consider an object located at the Geostationary ring under different perturbations:
J2 effect, Solar Radiation Pressure, Sun and Moon as third bodies.

I a = 42.164 km. e = 0.01, i = 0.01 rad. ω = Ω = M = 0 rad.
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Order of magnitude of perturbations

We consider an object located at the Geostationary ring under different
perturbations: J2 effect, Solar Radiation Pressure, Sun and Moon as third bodies.
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Poincaré’s variables

x1 =
√

2P sin p, y1 =
√

2P cos p,
x2 =

√
2Q sin q, y2 =

√
2Q cos q,

λ, L,

where p, q, P,Q are the modified Delaunay’s elements defined by:

P = L−G, p = −ω − Ω,
Q = G−H, q = −Ω.

where L,G,H are the classical Delaunay’s elements:

L =
√
µa, G =

√
µa(1− e2), H =

√
µa(1− e2) cos i.

Finally, λ is the mean longitude λ = M + ω + Ω. Classical Orbital Elements

Poincaré’s variables are:
I especially useful for treating problems with Hamiltonian dynamics.
I suitable for all eccentricities and inclinations.
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Space debris as a Dynamical System

Hamiltonian formulation of the problem
Given the generalized coordinates q = (x1, x2, λ) and the generalized momenta
p = (y1, y2, L) of a piece of space debris orbiting around the Earth, it is possible to
describe its motion following the Hamiltonian formulation:


q̇j =

∂H

∂pj
,

ṗj = −∂H
∂qj

,

⇒



ẋ1 =
∂H

∂y1
, ẏ1 = − ∂H

∂x1
,

ẋ2 =
∂H

∂y2
, ẏ2 = − ∂H

∂x2
,

λ̇ =
∂H

∂L
, L̇ = −∂H

∂λ
.

The Hamiltonian expression in terms of Poincaré’s variables is:

H(q,p) = Hkepler(q,p) +HSRP (q,p) +HJ2(q,p) +H3bS(q,p) +H3bM (q,p).
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Hamiltonian formulation of the problem

State of the art
The Hamiltonian considered in a previous modela was:

H = Hkepler +HSRP .

aHubaux, C., Lemaître, A.: “The impact of Earth’s shadow on the long-term evolution of space
debris,” Celest. Mech. Dyn. Astr., Vol. 116, 1, 79-95 (2013)

However, the present research includes the J2 effect in the Hamiltonian formulation
and the third body effect due to the Sun and Moon:

H(q,p) = Hkepler(q,p)︸ ︷︷ ︸
HKepler

+HSRP (q,p)︸ ︷︷ ︸
HSRP

+HJ2(q,p)︸ ︷︷ ︸
HJ2

+H3bS(q,p)︸ ︷︷ ︸
H3bS

+H3bM (q,p)︸ ︷︷ ︸
H3bM

.

The main reasons for including these perturbations are:
I The acceleration caused by SRP is stronger than J2 or vice-versa depending on

the area-to-mass ratio for space debris located at the geostationary ring.
I The third body perturbation (Sun and Moon) must be considered, especially for

long-term propagation. Order of Perturbations
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First averaging process: Space debris (1-day-period)

The Hamiltonian is averaged over the mean longitude (λ) since, for long-time
propagations, the short periodic oscillations caused by λ are meaningless.

Direct consecuences
I 6 d.o.f (x1, y1, x2, y2, λ, L) to 4 d.o.f (x1, y1, x2, y2).
I λ is not present anymore. Semi-major axis becomes constant.

H(q,p) = Hkepler(q,p)︸ ︷︷ ︸
HKepler

+HSRP (q,p)︸ ︷︷ ︸
HSRP

+HJ2(q,p)︸ ︷︷ ︸
HJ2

+H3bS(q,p)︸ ︷︷ ︸
H3bS

+H3bM (q,p)︸ ︷︷ ︸
H3bM

The following dynamical system provides the time evolution of the Poincaré’s variables
(limiting to SRP1 and J2):

ẋ1(t) =
∂H
∂y1

, ẋ2(t) =
∂H
∂y2

,

ẏ1(t) = − ∂H
∂x1

, ẏ2(t) = − ∂H
∂x2

.
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First averaging process: Space debris (1-day-period)

The Hamiltonian is averaged over the mean longitude (λ) since, for long-time
propagations, the short periodic oscillations caused by λ are meaningless.

Direct consecuences
I 6 d.o.f (x1, y1, x2, y2, λ, L) to 4 d.o.f (x1, y1, x2, y2).
I λ is not present anymore. Semi-major axis becomes constant.

H(q,p) = Hkepler(q,p)︸ ︷︷ ︸
HKepler

+HSRP (q,p)︸ ︷︷ ︸
HSRP

+HJ2(q,p)︸ ︷︷ ︸
HJ2

+H3bS(q,p)︸ ︷︷ ︸
H3bS

+H3bM (q,p)︸ ︷︷ ︸
H3bM

The explicit solution is given by (with η = C2
n�

):

x1(t) = A sin(C2t+ Φ) +
k sin(n�t+ λ�,0)

1− η2 [η cos ε+ 1] ,

y1(t) = A cos(C2t+ Φ) +
k cos(n�t+ λ�,0)

1− η2 [cos ε+ η] ,

where the constants A and Φ are determined by the initial conditions.
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Evolution of the eccentricity

The 1-year periodic motion is the most important. Its amplitude is proportional to k,
which means proportional to the area-to-mass ratio.
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Evolution of the eccentricity

Motion of the eccentricity over 200 years and comparison with a similar numerical
integration; we clearly see the superposition of the long and short motions on both
figures.

(a) Numerical. (b) Analytical.
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Second averaging process: Sun (1-year-period) and Moon (1-month-period)

We have averaged the equations ẋ2(t) and ẏ2(t) over the variables λ� and λ$, and we
obtain the corresponding solution for x2(t) and y2(t):

x2(t) = D sin(
√
d1d2 t− ψ),

y2(t) = D
√
d2
d1

cos(
√
d1d2 t− ψ)− d3

d1
.

Expressions for d1 , d2 y d3

Remarks
I These equations represent an oscillatory motion; D is the amplitude and ψ the

phase space.
I x1, y1, x2 and y2 represent the analytical solution of the problem of space debris

orbiting around the Earth in the geostationary ring.
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Evolution of the inclination : 200 years with A/m = 1

(c) Our analytical model. (d) Numerical integration NIMASTEP.
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Evolution of the inclination : 200 years with A/m = 20

(a) Our analytical model (b) Numerical integration NIMASTEP
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Period of the inclination as a function of A/m (m2/kg)

Each perturbation reduces the period of the inclination.

I SRP (red).
I SRP + J2 + Sun (blue).

I SRP + J2 (green).
I SRP + J2 + Sun + Moon (Magenta).
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Application : Synthetic population of space debris

Synthetic population in the GEO region and the analytical approach
Real population Unknown number of pieces of space debris (21.000 objects greater

than 10 cm according to NASA.)

Goal Simulate and understand evolution of pieces of space debris orbiting
around the Earth, based on the characteristics of each individual (initial
orbital elements, ratio A/m, etc)

Problem It is not possible to analyze all the individuals.

Solution Construct an artificial (synthetic) population starting from known
data around the true one (Two Line Elements, radar observations, etc)
and approximating the structure of the true population as accurate as
possible by means of the analytical method.
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Conclusions and Future Work

Conclusions
I An analytical model is presented to propagate space debris in the GEO region.
I A study of the period of the inclination is presented and the influence on it of the

different perturbations.
I A numerical study has been performed to compare the analytical solution with the

numerical one.

Future work
I Design a powerful synthetic population that will include all the catalogued

space debris plus thousands of artificial debris in the GEO region.

I Extract global properties or predictions of the synthetic population.

I Extract properties of the observed objects in the GEO region. Observation Space Debris
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Classical Orbital Elements
The Classical Orbital Elements are the parameters required to uniquely identify a
specific orbit. The traditional orbital elements are the six Keplerian elements.

I Semi-major axis (a).
I Eccentricity (e).
I Inclination (i).

I Argument of perigee (ω).
I Longitude of the ascending node (Ω).
I Mean anomaly (M ).

Poincaré’s variables



Hamiltonian formulation: Hkepler

Hkepler represents the attraction of the Earth as a central body. Its formulation is:

Hkepler(r,v) =
v2

2
− µ

r
,

where µ = GM⊕ with G the standard gravitational constant, M⊕ the mass of the Earth.

State of the art



Hamiltonian formulation: HSRP

HSRP represents the direct solar radiation pressure potential. Its expression is:

HSRP (r, r�) = Cr Pr
A

m
a2�

1

||r− r�||

= CrPr
A

m
a�
∑
n≥0

(
r

a�

)n
Pn(cosφ),

I Cr (fixed to 1 in this work) is a dimension-free reflectivity coefficient.
I Pr = 4.56× 10−6N/m2 is the radiation pressure for an object located at a

distance of 1 AU from the Sun.
I A/m is the area-to-mass ratio.
I a� is equal to the mean distance between the Sun and the Earth (i.e. a� = 1 AU).
I r� ' a�.

We split the expression in three parts:

HSRP (r, r�) = CrPr
A

m
a�(1 +

r

a�
cos(φ)) + CrPr

A

m
a�
∑
n≥2

(
r

a�

)n
Pn(cosφ)

' HSRP0 +HSRP1 +HSRP2 ,

State of the art



Hamiltonian formulation: HJ2

HJ2 represents the potential function that affects space debris due to the Earth
oblateness. In this work we only consider the zonal harmonic J2, which is the most
representative of the potential function.

The expression of HJ2 in terms of the position is:

HJ2(r) =
µ

r
J2
(r⊕
r

)2
P2 (sinφsat)

=
µ

r
J2
(r⊕
r

)2 1

2

(
3
(z
r

)2
− 1

)
,

where φsat represents the latitude of the satellite, and consequently, sinφsat = z/r.

State of the art



Hamiltonian formulation: H3bS and H3bM

The solar perturbation can be expressed by:

H3bS(r, r�) = −µ�
1

||r− r�||
+ µ�

r · r�
||r�||3

= −µ�

a�

∑
n≥0

(
r

a�

)n
Pn(cosφ) + µ�

ra� cos(φ)

a3�

= −µ�

a�
(1 +

∑
n≥2

(
r

a�

)n
Pn(cosφ)),

where µ� = GM� with M� the mass of the Sun.

Similarly, the lunar perturbation writes:

H3bM (r, r$) = −
µ$
a$

(1 +
∑
n≥2

(
r

a$

)n
Pn(cosφM )),

where µ$ = GM$ with M$ the mass of the Moon, and φM representing the angle
between the satellite and the Moon positions. The Moon is also assumed to follow a
circular orbit, i.e. r$ = a$.

State of the art



Averaged Hamiltonian: Hkepler

Hkepler represents the averaged Hamiltonian of the attraction of the Earth as a central
body,

Hkepler(q,p) = − µ2

2L2
.

It is now a constant term and will be omitted.

Averaged Hamiltonian



Averaged Hamiltonian: HJ2

HJ2(q,p) is obtained using the averaged Lagrange Planetary Equations:

dω

dt
=

3

4

√
µ

a3
J2
r2⊕
a2

4− 5 sin2 i

(1− e2)2
=
C2

2

4− 5 sin2 i

(1− e2)2
,

dΩ

dt
= −3

2

√
µ

a3
J2
r2⊕
a2

cos i

(1− e2)2
= −C2

cos i

(1− e2)2
,

(1)

where C2 = 3
2

√
µ
a3
J2

r2⊕
a2

.

Following the Hamiltonian formulation:

ṗ = −ω̇ − Ω̇ =
∂HJ2
∂P

= Cp,

q̇ = −Ω̇ =
∂HJ2
∂Q

= Cq,

and consequently, if we choose constant values for Cp and Cq,

HJ2(x1, y1, x2, y2) = Cp P + Cq Q =
Cp
2

(x21 + y21) +
Cq
2

(x22 + y22).

In the case of e = 0 and i = 0, we obtain : Cp = −C2 and Cq = C2.

Averaged Hamiltonian



Averaged Hamiltonian: HSRP

The Hamiltonian expression for the direct solar radiation pressure can be split into:

HSRP (x1, y1, x2, y2) = HSRP0 +HSRP1 +HSRP2 ,

I HSRP0 is a constant term and will be omitted.
I Following (Hubaux and Lemaitre 2013) HSRP1 can be expressed in terms of

Poincaré’s variables, truncated at e2 or i2, as:

HSRP1 = −n�k [r�,1(x1R2 + y1R1)− r�,2(x1R3 + y1R2)− r�,3(x1R5 − y1R4)] .

I HSRP2 = ?

The second order part of the solar radiation pressure, the solar and lunar perturbations
have also to be averaged over the fast variable λ.

We obtain an expression for:
I HSRP2 +H3bS = HSRP2+3bS = ?
I H3bM = ?

Averaged Hamiltonian



Averaged Hamiltonian: HSRP2+3bS

These are second order terms in a
a�

, then we limit their expansion to the first term,
neglecting the following terms proportional to e2. In other words, we keep the terms in
a e2

a�
but not those in ( a e

a�
)2. The immediate consequence is the dependence of the

averaged perturbation HSRP2+3bS only on x2 and y2 and not on x1 and y1:

HSRP2+3bS = HSRP2+3bS(−,−, x2, y2, r�) +O(
a2e2

a2�
).

With this assumption, we obtain :

HSRP2+3bS(x2, y2, r�) = −
[
CrPr

A

m
a� −

µ�

a�

]
3a2

4a2�
υ2
S = −β 3a2

4a2�
υ2
S ,

where υS = υS(x2, y2, r�) = − sin q sin i r�,1 − cos q sin i r�,2 + cos i r�,3, and

β =

[
CrPr

A

m
a� −

µ�

a�

]
.

Averaged Hamiltonian



Averaged Hamiltonian: H3bM

With the same assumptions, the lunar perturbation is given by:

H3bM (x2, y2, r$) =
µ$
a$

3a2

4a2$
υ2
M ,

where υM = − sin q sin i r$,1 − cos q sin i r$,2 + cos i r$,3.

Averaged Hamiltonian



Second averaging process: Sun (1-year-period) and Moon (1-month-period)

We have averaged the equations ẋ2(t) and ẏ2(t) over the variables λ� and λ$, and we
obtain the following simplified linear equations:{

ẋ2(t) = d1 y2 + d3,

ẏ2(t) = −d2 x2,

where

d1 = n�
k2

4L
cos ε+

Cq
2
− δ − δ cos 2ε− γ − γ cos εM ,

d2 = n�
k2

4L
cos ε+

Cq
2
− 2 δ cos 2ε− 2 γ cos 2εM ,

d3 = −n�
k2

2
√
L

sin ε+ 2 δ
√
L sin 2ε+ 2 γ

√
L sin 2εM ,

where δ = β 3a2

16 L a2�
and γ = −

µ$
a$

3a2

16 L a2$
.

Second Averaging Process



Application: Extract properties from the observed objects in the GEO region

Procedure
I Observation and detection of space debris in the GEO region.
I Orbit determination (a, e, i, ω, Ω, M ).
I Once we know the inclination evolution of the object, we will be able to adjust the

area-to-mass ratio of the object by fitting the analytical approach. Conclusions

Centro de Investigaciones de Astronomía. Mérida - Venezuela.
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