Radical Reactions at Surfaces

Dan Meyerstein

Biological Chemistry Dept., Ariel University, Ariel, Israel

and

Chemistry Dept., Ben-Gurion University of the Negev, Beer- Sheva, Israel.

Nanotek 2014

Importance of radical reactions at surfaces

- 1. Catalytic processes.
- 2. Electrochemical reactions.
- 3. Photochemical processes in which the light is absorbed by the solid.
- 4. Reduction of halo-organic compounds by metals, a process of environmental implications.

Reaction of aliphatic carbon-centered radicals with transition metal complexes in aqueous solutions

$$\longrightarrow M^{n\pm1}L_{m} + R^{-/+} \xrightarrow{\text{Outer sphere}} M^{n}C \sigma - bond$$

$$\longrightarrow L_{m}M^{n+1}-R \quad or \quad L_{m-1}M^{n+1}-R + L \qquad \text{Inner sphere}$$

$$M^{n}L_{m} + R \longrightarrow M^{n-1}L_{m-1} + L-R \quad or \quad L^{\pm} + R^{-/+} \qquad \text{Inner sphere}$$

$$M^{n}L_{m} + R \longrightarrow M^{n-1}L_{m-1} + L-R \quad or \quad L^{\pm} + R^{-/+} \qquad \text{Or } + L^{\pm} + R^{-/+} \qquad \text{Or } + L^{\pm} + R \qquad \text{Or } + R \qquad \text{Or } + L^{\pm} + R \qquad \text{Or } + R \qquad \text{Or } + L^{$$

+

Mechanisms of decomposition of the transient complexes L_mMⁿ⁺¹-R

- Heterolysis
- Homolysis
- <u>β- Elimination</u>
- β- Hydride Shift
- CO insertion
- Rearrangement of the carbon skeleton (R)

Methyl radicals

$$\cdot CH_3 + (CH_3)_2 SO \longrightarrow CH_4 + \cdot CH_2 S(O)(CH_3)$$

$$\cdot CH_3 + \cdot CH_3 \longrightarrow C_2H_6$$

E°(·CH₃) is not known.

Estimation: using the redox potentials of hydrogen atoms and the dissociation energy of:

Bond Type	Dissociation		
	Energy		
	(kcal/mol)		
H – H	104		
$H - CH_3$	105		
H – OH	119		
$CH_3 - OH$	91		

 $E(\cdot H/H^+) = 2.25 V$ $E(H_2/\cdot H + H^+) = -2.25 V$

Synthesis of Silver NPs

Experimental, Ag⁺ reduction using NaBH₄

Solutions composition:

- Ag₂SO₄ (2.5x10⁻⁴ M of Ag⁺), NaBH₄
 (1.5x10⁻³ M before the reduction), at pH 9.5.
- b) Same solution as (a) with the addition of NaCl (1.0x10⁻⁴ M).

TEM Micrographs of: a – Ag NPs; b – Ag NPs + NaCl

Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. J. Chem. Soc., Faraday Trans. 2 1979, 75, 790.

Irradiation of the NPs dispersions in the γ source

	$NPs \times 10^8$		G(C ₂ H ₆	G _{total} (·CH ₃)	$G(CH_4)/G(C_2H_6)$
Sample ^[a]	[M]	G(CH ₄))	b)
Blank (water)	0	4.2	0.8	5.8	5.3
Blank					
(aqueous borate) ^[b]	0	4.2	0.8	6.0	5.6
[Ag] _{NP}	0.7	1.7	2.2	6.1	0.78
[Ag] _{NP} /2	0.35	2.6	1.5	5.7	1.7
[Ag] _{NP} /5	0.14	4.0	0.82	5.6	4.9
[Ag] _{NP} /6	0.12	4.55	0.87	6.3	5.2
[Au] _{NP}	17	0.43	3.73	7.9	0.11
[Au] _{NP} /2	8.50	0.52	3.7	7.9	0.14
[Au] _{NP} /7	2.43	2.85	2.6	8.0	1.10
[Au] _{NP} /10	1.70	2.89	1.83	6.5	1.58
[Au] _{NP} /12	1.42	3.15	1.65	6.4	1.91

^[a] The solutions were irradiated at a dose rate of 18 rad/min (=1.8 × 10⁻⁹ M·s⁻¹) (total dose: 200-450 Gy). All samples contained (CH₃)₂SO and were N₂O saturated ^[b] G_{total}(·CH₃) = G(CH₄) + 2G(C₂H₆). Error limits ±15%

T. Zidki, H. Cohen, D. Meverstein, Phys. Chem. Chem. Phys. 2006 .8, 3552 –3556

Plausible reactions in solution:

(1)
$$\cdot CH_3 + \cdot CH_3 \rightarrow C_2H_6$$

(2) $\cdot CH_3 + (CH_3)_2SO \rightarrow CH_4 + \cdot CH_2S(O)CH_3$
(3) $\cdot CH_3 + (NP) - (CH_3)_{n-1} \rightarrow (NP) - (CH_3)_n$
(4) $(NP) - (CH_3)_n \rightarrow (NP) - (CH_3)_{n-2} + C_2H_6$
(5) $(NP) - (CH_3)_n + \cdot CH_3 \rightarrow (NP) - (CH_3)_{n-1} + C_2H_6$

(6)
$$(NP) - (CH_3)_n + H_3O^+ / H_2O \rightarrow (NP)^+ - (CH_3)_{n-1} + CH_4 + H_2O / OH^-$$

-1

Assumptions for k₃ calculation:

- Reaction 1 does not contribute to the ethane production in the presence of the NPs.
- k₃ is independent of n.
- Reaction (5) is negligible
- Reaction (6) does not occur.
- [·CH₃] is in a steady-state.

Plots of the ratios $G(CH_4)/G(C_2H_6)$ vs. [(CH₃)₂SO]/[NP] in order to derive k₃ for the reaction between methyl radicals and (i) silver NPs (ii) gold NPs.

R. Bar-Ziv, I. Zilbermann, O. Oster-Golberg, T. Zidki,, G. Yardeni, H. Cohen, D. Meyerstein, Chemistry Eur. J., 18, 4699-4705, 2012.

$k_3(Ag) = (7.8 \pm 1.5)x10^8 \text{ M}^{-1}\text{s}^{-1}$ $k_3(Au) = (1.9 \pm 0.4)x10^8 \text{ M}^{-1}\text{s}^{-1}$

These rate constants are lower by a factor of ca. 2, from those derived from results using a γ source with a higher dose rate

This systematic difference suggests that one of the assumptions taken in the derivation of the rate constants is not completely accurate:

•k₃ is somewhat dependent of n

•n increases with the dose rate of the γ source, *i.e.* more methyl radicals are covalently bound to a given particle at higher dose rates

•The increase of n increases the electron density on the NPs and therefore probably increases k_3

•This suggests that the lifetime of, $(NP)-(CH_3)_n$, has to be relatively long in order of enabling n to increase significantly beyond n = 1

Lifetime of (NP)-CH₃

(1)
$$\cdot CH_3 + (NP) \rightarrow (NP) - CH_3$$

$$(2) \qquad (NP) - (CH_3)_{n-1} + \cdot CH_3 \rightarrow (NP) - (CH_3)_n$$

(3)
$$(NP) - (CH_3)_n \rightarrow (NP) - (CH_3)_{n-2} + C_2H_6$$

(4)
$$(NP) - (CH_3)_n + CH_3 \rightarrow (NP) - (CH_3)_{n-1} + C_2H_6$$

The rate of $\cdot CH_3$ radical production, r:

$$r = 18 \frac{rad}{\min} \cdot \frac{1\min}{60\sec} \cdot 10^{-9} \frac{M}{rad} \cdot 6 = 1.8 \cdot 10^{-9} M \sec^{-1}$$

The minimal lifetime (τ) of the methyls bound to the NPs, (NP)-CH3:

$$Au \to \tau \ge \frac{2[Au]_{NP}}{r} = \frac{2 \times 1.7 \cdot 10^{-7} M}{1.8 \times 10^{-9} M \cdot sec^{-1}} \ge 188 \text{ sec}$$
$$Ag \to \tau \ge \frac{2[Ag]_{NP}}{r} = \frac{2 \times 7 \cdot 10^{-9} M}{1.8 \times 10^{-9} M \cdot sec^{-1}} \ge 8 \text{ sec}$$

Estimation of the (NP)-CH₃ bond strength:

From the value of τ using Frenkel equation,

 $\tau = \tau^{0} \exp(-\Delta H / RT)$, $\tau^{0} = 10^{-13}$ sec.

One can calculate that the (NP)-CH₃ bond strengths are \geq 70 kJ/mole

i.e. the bond strengths are of at least the same order of magnitude as many metal-carbon σ bonds in organometallic complexes. For the Au⁰-NPs this conclusion is in accord with recent conclusions regarding the (Au⁰-NP)-H bond strength, as it is reasonable to expect that the (Au⁰-NP)-CH₃ and (Au⁰-NP)-H bond strengths are similar.

$$\begin{split} [\text{TiO}_2\text{-}\text{NPs}]\text{-}\text{CH}_2(\text{CH}_3)_2\text{COH} \rightarrow [\text{TiO}_2\text{-}\text{NPs}]^+ + \\ (\text{CH}_3)_2\text{C}\text{=}\text{CH}_2 + \text{OH}^- \end{split}$$

 $[TiO_2-NPs] + CH_2(CH_3)_2COH \rightarrow [TiO_2-NPs]-CH_2(CH_3)_2COH$

t_{1/2} ~ 8 sec.

 $[TiO_2-NPs] + n \cdot CH_3 \rightarrow [TiO_2-NPs] - (CH_3)_n$ $[TiO_2-NPs] - (CH_3)_n \rightarrow [TiO_2-NPs] - (CH_3)_{n-m} + (m/2)C_2H_6$

Surprisingly TiO₂-NPs react similarly:

Reactions of radicals with TiO₂

- Platinum NPs aqueous suspension was prepared by the reduction of Pt^{IV} ions with NaBH₄
- The resultant color observed was brown, typical to Pt NPs

HR-TEM micrographs of the Pt NPs

 $[Pt]_{NP} = 2.2 \times 10^{-7} \text{ M}$, d=3.2 nm (ca. 500 surface atoms/NP)

Solution composition: Pt(SO₄)_{2(aq)} (2.5x10⁻⁴ M of Pt⁴⁺), NaBH₄ (2x10⁻³ M before the reduction). The NPs final pH was 8.0 (±0.2)

Results- reactions between methyl radicals and Pt-NPs

Sample ^[a]	G(CH ₄)	G(C ₂ H ₆)	G(C ₂ H ₄)	CH ₄ /C ₂ H ₆	G _(total) [c]
Pt ⁰ -NPs (0.05 M DMSO)	0.59	0.80	0.10	0.74	2.39
Pt ⁰ -NPs (0.05 M DMSO) after H ₂ ^[b]	2.08	-	-	-	2.08 (G _t =2.08 +2.39 =4.47)
Blank (0.05 M DMSO)	1.7	2.4		0.70	6.5

[a] The solutions were irradiated at a dose rate of 12 Gy/min (total dose 184 Gy), all samples contained 2.2×10^{-7} M Pt°-NPs and 0.05 M (CH₃)₂SO at pH 8.0 ± 0.2. (blank- an aqueous solution containing (CH₃)₂SO without NPs). [b] After H₂ injection (2 ml, 1 atm into a 14 ml vial containing 5 ml of an irradiated sample). [c] Gtotal (·CH₃)= G(CH₄) + 2G(C₂H₆) + 2G(C₂H₄) .Error limits ± 10%. (C₂H₄ ± 20%).

R. Bar-Ziv, I. Zilbermann, O. Oster-Golberg, T. Zidki, G. Yardeni, H. Cohen, D. Meyerstein, Chemistry Eur. J., 18, 4699-4705, 2012.

Reaction mechanism

Surface Coverage

G = 2.1 for CH₄ released from the NPs by the addition of H₂ is equivalent to 38.3 μ M.

A rough calculation of the number of Pt^o atoms on the surface of the NPs gives ~ 500 atoms per NP.

As the concentration of the NPs is 2.2×10^{-7} M the concentration of Pt^o surface atoms is ~ 1.1×10^{-4} M.

Thus the results point out that methyls are bound to ca. 35 % of the surface atoms, a relatively dense coverage.

This coverage might depend on the total dose delivered to the sample and might affect $k(\cdot CH_3 + Pt^{\circ}-NPs)$.

Zeta Potential Pt NPs vs. time irr. (dose)

Pt NPs + 0.05 M (CH₃)₂SO before and after irradiation (dose rate 1150 rad/min)

R. Bar-Ziv et. al. to be published.

k vs. dose (Pt NPs, 0.05 M DMSO)

Summary of the Reactions of Methyl Radical with NPs dispersed in aqueous solutions

NPs ^[a]	major product	minor product	traces
Au	C ₂ H ₆	-	-
Ag	C ₂ H ₆	-	-
Pt	(NP)-CH ₃	C_2H_6 , CH_4	C ₂ H ₄ , polymerization
Pd	(NP)-CH ₃	CH_4, C_2H_6	C ₂ H ₄ , polymerization
Au-Pt	C_2H_6	(NP)-CH ₃	C ₂ H ₄
Cu	CH ₄	C_2H_6	-
Cu@CuO	C_2H_6	CH ₄	-
TiO ₂	C ₂ H ₆	-	-

^[a] The suspensions were irradiated at ⁶⁰Co gamma source and contained (CH₃)₂SO and were N₂O saturated

 $NP^{n-m}-H_m \rightarrow NP^{n-m}-H_{m-l} + \frac{1}{2}H_2$

 $NP^{n-} + mH_3O^+ \rightarrow NP^{n-m}-H_m$

 $n \cdot C(CH_3)_2OH + NP \rightarrow n(CH_3)_2CO + nH_3O^+ + NP^{n-1}$

 $2 \cdot C(CH_3)_2 OH \rightarrow (CH_3)_2 CO + HC(CH_3)_2 OH$

 $HC(CH_3)_2OH + \cdot OH/H \cdot \rightarrow \cdot C(CH_3)_2OH + H_2O/H_2$ $(CH_3)_2CO + e_{aq} + H_3O^+ \rightarrow \cdot C(CH_3)_2OH$

 γ, e^{-1} H₂O $\rightarrow e^{-1}_{aq}$ (2.65); OH (2.65); H (0.60); H₂ (0.60); H₂O₂ (0.75)

Catalysis of water reduction, HER

The Effect of Silica-Nanoparticles Support on the Catalytic Reduction of Water by Gold and Platinum NPs.

(a) TEM micrograph of the SiO_2 -Au⁰-NCs and (b) the UV-VIS spectrum of a suspension of these composite particles. The absorbance was measured in in a 1 mm optical path cuvette and the spectrum is normalized to 1 cm optical path.

 H_2 yields from irradiated SiO₂-NPs, blank, (black line) and Au⁰-SiO₂-NCs suspensions at [Au] = 5 and 25 mM (blue and red lines, respectively) at a constant molar ratio [(SiO₂)_p]/[Au] = 17.8.

Catalysis and deactivation of water reduction by various [M° -NPs] and [M° -SiO₂-NCs]

	Cat	alysis	Deactivation		
Catalyst	G(H ₂) _{Max}	. [M], mM	G(H ₂) _{Min}	[M], mN	Dose Rate, Gy/min
Ag°-NPs	3.0	0.25			8.3
Ag°-NPs	2.9	1.4-170			106
Au°-NPs	4.2	0.54			160
Au°-NPs	3.9	1.4-170			72
Pt [°] -NPs (pH 1)	6	0.05			13.8
Pt [°] -NPs (pH 8)			0	0.25	10
Ag [°] -SiO ₂ -NCs	1.9	1.9 0.12		120	106
Ag [°] -SiO ₂ -NCs	1.0	12	1.0 12		106
Au [°] -SiO ₂ -NCs	2.9	5			106
Au [°] -SiO ₂ -NCs	1.7	25			106
Catalytic H ₂ formation Full deactivation/de			n/destruct	ion	Non catalytic H ₂ formation

Conclusions

- Radicals react in fast reactions with surfaces forming transients with σ -bonds to the surface.
- The mechanism of decomposition of the transients thus formed depends on the nature of the surface; the radical; the solvent *etc.*
- The support of the NPs affects dramatically their properties.
- These processes have to be considered in catalytic, electrochemical, photo-chemical and environmental processes.

The work of the righteous is done by others:

Beer-Sheva:

Prof. H. Cohen Dr. A. Masarwa Dr. I. Zilbermann Dr. I. Rusonik Dr. T. Zidki Dr. O. Oster-Golberg Mr. R. Bar-Ziv Ms. A. Elisseev

Thanks for your attention

$$\xrightarrow{a} M^{n+1}L_m + RH + OH^-$$
$$L_m M^{n+1}-R + H_2 O$$
$$\xrightarrow{b} M^{n-1}L_m + ROH/R_{-H} + H_3 O^+$$

Homolysis

$$L_m M^{n+1} - R + L \xrightarrow[k_1]{k_1} M^n L_m + R$$

Followed by:

- $2 \mathbb{R} \longrightarrow \mathbb{R}_2/\mathbb{R} + \mathbb{R}_{-H}$
- $R \cdot + S \longrightarrow P$
- $\cdot \mathbf{R} + \mathbf{L}_{m-1}\mathbf{M}^{n+1} \mathbf{R} \xrightarrow{\mathbf{L}} \mathbf{M}^{n}\mathbf{L}_{m} + \mathbf{R}_{2}/(\mathbf{R}^{+} + \mathbf{R}^{-})$

 $\cdot \mathbf{R} + \mathbf{O}_2 \longrightarrow \mathbf{RO}_2 \cdot$

β- Eliminations

$L_{m}M^{n+1}-CR^{1}R^{2}CR^{3}R^{4}X \longrightarrow M^{n+1}L_{m} + R^{1}R^{2}C=CR^{3}R^{4} + X^{-}$

X = OR, NR₂, OPO₃²⁻, CI, NHC(O)R good leaving group bound to β -carbon

Pt NPs solutions- extraction with dodecane - before and after irradiation , *i.e.* after reaction with •CH₃ radicals

From the results one concludes that

 $G(\cdot CH_3 + Pt^{\circ}-NPs) = 6.5 - (0.59 + 2x0.29) \sim 5.4.$

i.e. under the experimental conditions 82% of the methyl radicals react with the NPs.

Therefore to derive $k(\cdot CH_3 + Pt-NPs)$, the following expression should be applied:

 $G(\cdot CH_3 + (CH_3)_2 SO) / G(\cdot CH_3 + Pt-NPs) = k[\cdot CH_3] \cdot [CH_3)_2 SO] / k[\cdot CH_3] \cdot [NP]$

 $0.59/5.4 = 100[\cdot CH_3] \cdot [(CH_3)_2 SO] / k[\cdot CH_3] \cdot [NP] => k = 100x0.05x5.4/0.59x2.2x10^{-7} \sim 2 x10^8 M^{-1}s^{-1}$

R. Bar-Ziv *et. al.* to be published.