Radical Reactions at Surfaces

Dan Meyerstein

Biological Chemistry Dept., Ariel University, Ariel, Israel

and

Chemistry Dept., Ben-Gurion University of the Negev, Beer- Sheva, Israel.

Nanotek 2014

Importance of radical reactions at surfaces

- 1. Catalytic processes.
- 2. Electrochemical reactions.
- 3. Photochemical processes in which the light is absorbed by the solid.
- 4. Reduction of halo-organic compounds by metals, a process of environmental implications.

Reaction of aliphatic carbon-centered radicals with transition metal complexes in aqueous solutions

$$
M^{n+1}L_{m} + R^{-/+}
$$

\n
$$
M^{-}C \circ
$$

\n
$$
M^{n+1}-R \text{ or } L_{m-1}M^{n+1}-R + L
$$

\n
$$
M^{n}L_{m} + R \longrightarrow M^{n-1}L_{m-1} + L-R \text{ or } L^{\pm} + R^{-/+}
$$

\n
$$
L_{m-1}M^{n-}LR \text{ or } M^{n+1}L_{m-1} + L-R^{-/+}
$$

\nor + L^{\pm} + R
\n
$$
\longrightarrow L_{m-1}M^{n}(L^{\pm}) + R^{-/+} \longrightarrow M^{n+1}L_{m} + R^{-}
$$

 $+$

Mechanisms of decomposition of the transient complexes L_m Mn+1-R

- •<u>• Heterolysis</u>
- Homolycic <u>• Homolysis</u>
- R- Flimins β-<u>- Elimination</u>
- K. Hydride S β- Hydride Shift
- •CO insertion
- Rearranner Rearrangement of the carbon skeleton (R)

Methyl radicals

$$
\cdot \text{CH}_3 + (\text{CH}_3)_2 \text{SO} \longrightarrow \text{CH}_4 + \cdot \text{CH}_2 \text{S}(\text{O})(\text{CH}_3)
$$

$$
\cdot \text{CH}_3 + \cdot \text{CH}_3 \longrightarrow \text{C}_2\text{H}_6
$$

Eo(·CH3) is not known.

Estimation: using the redox potentials of hydrogen atoms and the dissociation energy of:

E(·**H/H+) = 2.25 VE(H2/**·**H + H+) = -2.25 V**

Synthesis of Silver NPs

Experimental, Ag⁺ reduction using NaBH₄

Solutions composition:

- a) $\rm Ag_2SO_4$ (2.5x10⁻⁴ M of Ag⁺), $\rm NaBH_4$ $(1.5x10⁻³$ M before the reduction), at pH 9.5.
- b) Same solution as (a) with the addition of NaCl (1.0x10-4 M) .

TEM Micrographs of: a – Ag NPs; b – Ag NPs + NaCl

Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. *J. Chem. Soc., Faraday Trans. 2* 1979, *75*, 790.

Irradiation of the NPs dispersions in the γ source

[a] The solutions were irradiated at a dose rate of 18 rad/min (=1.8×**10-9 M·s-1) (total dose: 200-450 Gy). All** samples contained (CH $_3)_2$ SO and were N $_2$ O saturated $^{\rm [b]}$ G $_{\rm total}$ (\cdot CH $_3$) = G(CH $_4$) + 2G(C $_2$ H $_6$). Error limits \pm 15%

T. Zidki, H. Cohen, D. Meyerstein, Phys. Chem. Chem. Phys. 2006 ,8, 3552 –3556

Plausible reactions in solution:

(1)
$$
CH_3 + CH_3 \rightarrow C_2H_6
$$

\n(2) $CH_3 + (CH_3)_2SO \rightarrow CH_4 + CH_2S(O)CH_3$
\n(3) $CH_3 + (NP) - (CH_3)_{n-1} \rightarrow (NP) - (CH_3)_n$
\n(4) $(NP) - (CH_3)_n \rightarrow (NP) - (CH_3)_{n-2} + C_2H_6$
\n(5) $(NP) - (CH_3)_n + CH_3 \rightarrow (NP) - (CH_3)_{n-1} + C_2H_6$
\n(6) $(NP) - (CH_3)_n + H_3O^+ / H_2O \rightarrow (NP)^+ - (CH_3)_{n-1} + CH_4 + H_2O / OH$

(6)
$$
(NP)-(CH_3)_n + H_3O^+ / H_2O \rightarrow (NP)^+ - (CH_3)_{n-1} + CH_4 + H_2O / OH^-
$$

Assumptions for k3 calculation:

- **Reaction 1 does not contribute to the ethane production in the presence of the NPs.**
- **^k³ is independent of n.**
- **Reaction (5) is negligible**
- **Reaction (6) does not occur.**
- **[·CH3] is in a steady-state.**

Plots of the ratios $G(CH_4)/G(C_2H_6)$ vs. $[(CH_3)_2SO]/[NP]$ in order to **derive k³ for the reaction between methyl radicals and (i) silver NPs (ii) gold NPs.**

R. Bar-Ziv, I. Zilbermann, O. Oster-Golberg, T. Zidki,, G. Yardeni, H. Cohen, D. Meyerstein, Chemistry Eur. J., 18, 4699-4705, 2012.

k3(Ag) = (7.8 ± **1.5)x10 8** k_3 (Au) = (1.9 \pm 0.4)x10⁸ **M-1 s-1 M-1 s-1**

These rate constants are lower by a factor of ca. 2, from those derived from results using a γ source with a higher dose rate

This systematic difference suggests that one of the assumptions taken in the derivation of the rate constants is not completely accurate:

 \cdot k $_3$ is somewhat dependent of n

•n increases with the dose rate of the γ source, *i.e.* more methyl radicals are covalently bound to a given particle at higher dose rates

•The increase of n increases the electron density on the NPs and therefore probably increases k_3

 \bullet This suggests that the lifetime of, (NP)-(CH₃)_n, has to be relatively long in order of enabling n to increase significantly beyond $n = 1$

Lifetime of (NP) -CH₃

$$
(1) \qquad \cdot CH_3 + (NP) \to (NP) - CH_3
$$

(2)
$$
(NP)-(CH_3)_{n-1} + \cdot CH_3 \rightarrow (NP)-(CH_3)_{n}
$$

(3)
$$
(NP)-(CH_3)_n \rightarrow (NP)-(CH_3)_{n-2} + C_2H_6
$$

(4)
$$
(NP)-(CH_3)_n + \cdot CH_3 \rightarrow (NP)-(CH_3)_{n-1} + C_2H_6
$$

The rate of \cdot CH $_3$ $_{\rm 3}$ radical production, r:

$$
r = 18 \frac{rad}{\text{min}} \cdot \frac{1 \text{min}}{60 \text{ sec}} \cdot 10^{-9} \frac{M}{rad} \cdot 6 = 1.8 \cdot 10^{-9} M \text{ sec}^{-1}
$$

The minimal lifetime (τ) of the methyls bound to the NPs, (NP)-CH3:
 $Au \rightarrow \tau \ge \frac{2[Au]_{NP}}{} = \frac{2 \times 1.7 \cdot 10^{-7} M}{\tau} \ge 188 \text{ sec}$

$$
\text{Au} \to \tau \ge \frac{2[\text{Au}]_{\text{NP}}}{r} = \frac{2 \times 1.7 \cdot 10^{-7} \text{M}}{1.8 \times 10^{-9} \text{M} \cdot \text{sec}^{-1}} \ge 188 \text{ sec}
$$
\n
$$
\text{Ag} \to \tau \ge \frac{2[\text{Ag}]_{\text{NP}}}{r} = \frac{2 \times 7 \cdot 10^{-9} \text{M}}{1.8 \times 10^{-9} \text{M} \cdot \text{sec}^{-1}} \ge 8 \text{ sec}
$$

Estimation of the (NP)-CH3 bond strength:

From the value of τ using Frenkel equation,

 $\tau = \tau^0$ exp(-ΔH /RT) , τ^0 =10⁻¹³ sec.

One can calculate that the **(NP)-CH3 bond strengths are** ≥ **70 kJ/mole**

i.e. the bond strengths are of at least the same order of magnitude as many metal-carbon σ bonds in organometallic complexes. For the Au⁰-NPs this conclusion is in accord with recent conclusions regarding the (Au⁰-NP)-H bond strength, as it is reasonable to expect that the (Au⁰- NP)-CH₃ and (Au⁰-NP)-H bond strengths are similar.

[TiO₂-NPs]-CH₂(CH₃)₂COH \rightarrow [TiO₂-NPs]+ ᠇ + (CH $_{3})_{2}$ C=CH $_{2}$ $_2$ + OH⁻

[TiO $_2$ -NPs] + \cdot CH $_2$ (CH $_3)_2$ COH \rightarrow [TiO $_{2}$ -NPs]-CH $_{2}$ (CH $_{3})_{2}$ COH

 $\bm{{\mathfrak{t}}}_{1/2}$ ~ 8 sec.

[TiO₂-NPs] + n·CH₃ → [TiO₂-NPs]-(CH₃)_n [TiO₂-NPs]-(CH₃)_n \rightarrow [TiO₂-NPs]-(CH₃)_{n-m} + (m/2)C $_2\mathsf{H}_6$

Surprisingly TiO2-NPs react similarly:

Reactions of radicals with TiO2

- •**Platinum NPs** aqueous suspension was prepared by the reduction of Pt^{IV} ions with NaBH₄
- The resultant color observed was brown, typical to Pt NPs •

HR-TEM micrographs of the Pt NPs

[Pt]NP = 2.2 x 10-7 M , d=3.2 nm (ca. 500 surface atoms/NP)

Solution composition:Pt(SO₄)_{2(aq)} (2.5x10⁻⁴ M of Pt⁴⁺), NaBH₄ (2x10⁻³ M before the reduction). The NPs final pH was 8.0 (\pm 0.2)

Results- reactions between methyl radicals and Pt-NPs

[a] The solutions were irradiated at a dose rate of 12 Gy/min (total dose 184 Gy), all samples contained 2.2x10⁻⁷M Pt^o-NPs and 0.05 M (CH₃)₂SO at pH 8.0 ± 0.2. (blank- an aqueous solution containing (CH₃)₂SO without NPs). [b] After H₂ injection (2 ml, 1 atm into a 14 ml vial containing 5 ml of an irradiated sample). [c] Gtotal (\cdot CH $_{3}$)= G(CH $_{4}$) + 2G(C $_{2}$ H $_{6}$) + 2G(C $_{2}$ H $_{4}$) .Error limits ± 10%. (C $_{2}$ H $_{4}$ ± 20%).

R. Bar-Ziv, I. Zilbermann, O. Oster-Golberg, T. Zidki,, G. Yardeni, H. Cohen, D. Meyerstein, Chemistry Eur. J., 18, 4699-4705, 2012.

Reaction mechanism

Surface Coverage

 $G = 2.1$ for CH_4 released from the NPs by the addition of ${\sf H_2}$ is equivalent to 38.3 μ M.

A rough calculation of the number of Pt^o atoms on the surface of the NPs gives ~ 500 atoms per NP.

As the concentration of the NPs is 2.2x10⁻⁷ M the concentration of Pt° surface atoms is ~ 1.1x10⁻⁴ M.

Thus the results point out that methyls are bound to ca. 35 % of the surface atoms, a relatively dense coverage.

This coverage might depend on the total dose delivered to the sample and might affect $k(\cdot CH_3 + Pt^o\text{-NPs})$.

 Zeta Potential Pt NPs vs. time irr. (dose)

Pt NPs + 0.05 M (CH3)2SO before and after irradiation (dose rate 1150 rad/min)

R. Bar-Ziv et. al. to be published.

k vs. dose (Pt NPs, 0.05 M DMSO)

Summary of the Reactions of Methyl Radical with NPs dispersed in aqueous solutions

[a] The suspensions were irradiated at ⁶⁰Co gamma source and contained (CH3)2SO and were N2O saturated

 $\mathsf{NP^{n-m}\text{-}H_m}\rightarrow\mathsf{NP^{n-m}\text{-}H_{m\text{-}l}} + \ \ \ }\%$ H 2

 $\mathsf{NP^{n_\text{-}}}{}$ + $\mathsf{mH_3O^+}{}$ $+$ \rightarrow NP^{n-m}-H m

 $n\text{-}C(CH_3)_2\text{OH} + \text{NP} \rightarrow n(\text{CH})$ $_3)_2$ CO + nH $_3$ O+ + NPⁿ⁻

2·C(CH₃)₂OH → (CH $_{3})_2$ CO + HC(CH $_3)_2$ OH

HC(CH3)2OH + **.**OH/H**. .**C(CH $(\text{CH}_3)_2\text{CO} + \text{e}^{\cdot}_{aq} + \text{H}_3\text{O}^+ \rightarrow \cdot \text{C}(\text{CH})$ $_{3})_2$ OH + H $_2$ O/H $_2$ $_3$ O⁺ → \cdot C(CH $_{3})_{2}$ OH

γ, e ${\sf H_2O}$ \rightarrow $\,$ e $^{-}_{aq}$ (2.65); OH (2.65); H $\,$ (0.60); H $_{2}$ (0.60); H $_{2}$ O $_{2}$ (0.75)

Catalysis of water reduction, HER

The Effect of Silica-Nanoparticles Support on the Catalytic Reduction of Water by Gold and Platinum NPs.

(a) TEM micrograph of the SiO2-Au⁰-NCs and (b) the UV-VIS spectrum of ^a suspension of these composite particles. The absorbance was measured in in ^a ¹ mm optical path cuvette and the spectrumis normalized to 1 cm optical path.

 H_2 **(black line) and Au0-SiO²-NCs suspensions yields from irradiated SiO²-NPs, blank, at [Au] ⁼ 5 and 25 mM (blue and red lines, respectively) at ^a constant molar ratio[(SiO2)^p]/[Au] ⁼ 17.8.**

Catalysis and deactivation of water reduction by various [M°**-NPs] and [M**°**-SiO2-NCs]**

Conclusions

- Radicals react in fast reactions with surfaces forming transients with σ-bonds to the surface.
- The mechanism of decomposition of the transients thus formed depends on the nature of the surface; the radical; the solvent etc.
- The support of the NPs affects dramatically their properties.
- These processes have to be considered in catalytic, electrochemical, photo-chemical and environmental processes.

The work of the righteous is done by others:

Beer-Sheva:

Prof. H. Cohen Dr. A. Masarwa Dr. I. ZilbermannDr. I. Rusonik Dr. T. ZidkiDr. O. Oster-GolbergMr. R. Bar-ZivMs. A. Elisseev

Thanks for your attention

Heterolysis

$$
\frac{a)}{2} \cdot M^{n+1}L_m + RH + OH
$$
\n
$$
L_mM^{n+1}-R + H_2O
$$
\n
$$
\frac{b)}{2} \cdot M^{n-1}L_m + ROH/R_{-H} + H_3O^+
$$

Homolysis

$$
L_m M^{n+1-R} + L \xrightarrow[k_1]{k_1} M^n L_m + R
$$

Followed by:

- 2 R $\cdot \longrightarrow R_{2}/RH + R_{H}$
- R**. ⁺** S P
- $-R + L_{m-1}M^{n+1}-R \longrightarrow M^nL_m + R_2/(R^+ + R^-)$

 \cdot R + O₂ \longrightarrow RO₂.

β- Eliminations

$L_mM^{n+1}-CR^1R^2CR^3R^4X \longrightarrow$ $M^{n+1}L_m + R^1R^2C = CR^3R^4 + X^{-1}$

$X = OR$, $NR₂$, $OPO₃²$, CI, $NHC(O)R$ good leaving group bound to β-carbon

Pt NPs solutions- extraction with dodecane - before and after irradiation , *i.e.* after reaction with \cdot CH₃ radicals

From the results one concludes that

 $\mathsf{G}(\mathord{\cdot}\mathsf{CH}_3)$ $_3$ + Pt^o-NPs) = 6.5– (0.59 + 2x0.29) ~ 5.4.

i.e. under the experimental conditions 82% of the methyl radicals react with the NPs.

Therefore to derive k(\cdot CH $_3$ expression should be applied: ₃ + Pt-NPs), the following

 $\mathsf{G}(\mathord{\cdot}\mathsf{CH}_3)$ (CH₃)₂SO]/k[·CH₃]·[NP] $_3^3$ + (CH $_{3})_{2}$ SO) /G(\cdot CH $_{3}$ $_3$ + Pt-NPs) = k [\cdot CH₃] \cdot [

 $0.59/5.4 = 100[\cdot \text{CH}_{3}] \cdot [(\text{CH}_{3})_{2}\text{SO}]/\text{K}[\cdot \text{CH}_{3}] \cdot [\text{NP}] \implies$ k = 100x0.05x5.4/0.59x2.2x10-7~ **2 x108M-1s-1**

R. Bar-Ziv et. al. to be published.