About Omics Group

OMICS Group International through its Open Access Initiative is committed to make genuine and reliablecontributions to the scientific community. <u>OMICS</u> Group hosts over 400 leading-edge peer reviewed Open Access Journals and organize over ³⁰⁰ International Conferences annually all over the world. OMICSPublishing Group journals have over 3 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 30000 eminent personalities that ensure ^a rapid, quality andquick review process.

About Omics Group conferences

- **OMICS Group** signed an agreement with more than 1000 International Societies to make healthcare informationOpen Access. **OMICS Group** Conferences make the perfect platform for global networking as it brings together renowned speakers and scientists across the ^globe to a most exciting and memorable scientific event filled with much enlightening interactive sessions, world class exhibitionsand poster presentations
- Omics group has organised 500 conferences, workshops and national symposium across the major cities including SanFrancisco,Omaha,Orlado,Rayleigh,SantaClara,Chicago ,Philadelphia,Unitedkingdom,Baltimore,SanAntanio,Dubai,Hyderabad,Bangaluru and Mumbai.

Maximizing the Bandwidth While Minimizingthe Spectral Fluctuations Using Supercontinuum
Spection in Photonic Crystal Chologaepide Fibe Generation in Photonic Crystal Chalcogenide Fibers

C. R. Menyuk and R. J. Weiblen

University of Maryland Baltimore County

J. Hu

Baylor University

L. B. Shaw and J. S. Sanghera

Naval Research Laboratory

I. D. Aggarwal Sotera Defense Solutions

Project Goal

GOAL: To make a broadband $(2 - 10 \,\mu m)$ mid-IR source

UMBC

…while smoothing the spectral profile

Why mid-IR sources?

Many important materials radiate or absorb in this range

Spectral responseof ammonia

…And it is not alone!**UMBC**

Why chalcogenide?

 1.5

 1.0

 0.5

Key:

 $A \bullet B \bullet X$

Attenuation dB/m

Attenuation in the chalcogenides remainssmall beyond 10 μ m

Wavelength um

Attenuation in silica growsrapidly beyond 2.5 μ m

Source: Oxford Electronicswww.oxford-electronics.com

Photonic crystal fibers (PCF)

Solid-core PCF

7

Solid core PCFs allow us to:

- design "endlessly single-mode" fibers
- make use of the nonlinearity

holey cladding formseffective low-index material

- Supercontinuum generation \checkmark Kerr nonlinearity $\sqrt{\mathsf{R}}$ aman effect
	- ν Dispersion

It is a complicated process! \dots that produces a noise-like spectrum!!

- Supercontinuum generation
	- \checkmark Kerr nonlinearity
	- $\sqrt{\mathsf{R}}$ aman effect
	- ν Dispersion

- Supercontinuum generation using photonic crystal fiber (PCF)1
	- Wide single-mode region
	- \checkmark Enhanced nonlinearity
	- \checkmark Tailored dispersion

¹Dudley, *et al.,* Rev. Mod. Phys. **78,** 1135 (2006).

Supercontinuum generation in chalcogenide fibers
ie net the same se in silies fiberal is not the same as in silica fibers!

WHY?

10

- Different material properties
- There are no good sources beyond 2.5 3.0 μ m

We must move the energy from short to long wavelengths!

Supercontinuum generation in chalcogenide fibers
ie net the same se in silies fiberal is not the same as in silica fibers!

A key finding:

supercontinuum generation proceeds in two stages

- Stage 1: four-wave mixing
- Stage 2: soliton self-frequency shift

Each stage should be as large as possible!

¹Dudley, *et al.,* Rev. Mod. Phys. **78,** 1135 (2006).

Design criteria

Supercontinuum generation is a complicated process
 BUT

there are general design criteria that work well

- 1. Design the fiber so that it is single-mode
	- increases the effective nonlinearity
- 2. Ensure that four-wave mixing is phase-matched with the largest possible Stokes wavelength
	- —Rapidly moves energy to a large wavelength
- 3. Make the second zero dispersion wavelength as large aspossible
	- —Allows the soliton self-frequency shift to go to long wavelengths

Three Example Designs

Fixed fiber and pulse features

- \cdot (1) As $_{2}$ Se $_{3}$ fiber; 2.5 μ m pump (2) As_2S_3 fiber; 2.0 μ m pump (3) $\mathsf{As_2S_3}$ fiber; 2.8 μ m pump
- Five-ring hexagonal structure

Fiber parameters to vary:

- Air-hole diameter (*d*)
- Pitch (Λ)

Pulse parameters to vary:

- Peak power
- Pulse duration

```
0000000000000000000000000000000000000000000\circ \circ \circ \circ \circ0000000000000000000000000000000000000000<u>္၀၀၀၀၀</u>
Λ
```


Three Example Designs

Needed fiber quantities(experimentally determined)

- Kerr coefficient
- Raman gain
- Material dispersion

Needed fiber quantities (calculated)

- Total Raman response
	- calculated once
- Total dispersion (we use COMSOL)
	- calculated for each set of fiber parameters

000000 000000 00000000 0000000000 00000000000 $\circ \circ \circ \circ \circ$ 00000 00000000000 0000000000 00000000 \circ 000000 000 Λ

Generalized nonlinear Schrödinger equation (GNLS)

 $\partial A(\tau t)$ $\tilde{}$ In principle: We can optimize by solving the GNLS for a broad set of fiber and pulse parameters

$$
\frac{\partial A(z,t)}{\partial z} - i \text{IFT} \left\{ \left[\beta(\omega_0 + \Omega) - \beta(\omega_0) - \Omega \beta'(\omega_0) \right] \tilde{A}(z,\Omega) \right\}
$$

$$
= i \gamma \left(1 + \frac{i}{\omega_0} \frac{\partial}{\partial t} \right) \left[A(z,t) \int_{-\infty}^t R(t') \left| A(z,t-t') \right|^2 dt' \right]
$$

 $A(z,t)$: Electric field envelope β : Propagation constant (we use COMSOL) $R(t) = (1 - f_R) \delta(t) + f_R h_R(t)$ $\gamma = n_2 \omega_0 / (cA_{\text{eff}})$: Kerr coefficient Kerr effect Raman effect

UMBC

Generalized nonlinear Schrödinger equation (GNLS)

In practice: We use our design criteria to reduce the labor

In any case: We must solve the GNLS for a broad enough parameter set to verify the design criteria

Output spectrum (example 1)

Spectrogram

18

Output spectrum (example 2)

- \bullet The goal is to optimize the power between 3 and 5 \upmu m
- > 25% of the power is in the desired range

UMBC.

Output spectrum (example 3)

Key Issues

• Large fluctuations in the output spectrum

> 20 dB in some cases

Key Issues

• Extreme Sensitivity of the bandwidth

 < 0.1% change in pulse duration or peak powerchanges the power spectrum significantly

Key Issues

• The extreme sensitivity will not appear in real systems!

Real systems have a 10% variation of the pulse durations and peak intensities

• So what are the "real" bandwidths and fluctuation levels?

An ensemble average is needed

•How big does the ensemble need to be?

Spectral Characterization

Three spectralregions arevisible

UMBC

Spectral Characterization

• Region 1

□ Due to initial four-wave mixing; shaped by material loss

□ Does not change significantly with small changes in the pulse
naramotors parameters

• Region 2

□ Contains many interacting solitons

□ Flattest and most variable

• Region 3

- □ Due to the longest wavelength soliton
- **□ Has the largest effect on the bandwidth**

Spectral Characterization

Pearson (spectral) autocorrelation traces

The results suggest that there are up to 10⁶ independent realizations

UMBC

26

Computational Approach

- $\bm{\cdot}$ 10 6 realizations
- We tile the parameter space in groups of 100

Key Results

Key Results

• 5000 realizations determine the bandwidth

29

Key Results

• Tiling is efficient and needed

Conclusions

- We have elucidated the physical process of supercontinuum generation in chalcogenide fibers.
- We have shown (in one case) that an average over 5000 realizations is sufficient to accurately determine the bandwidth and fluctuation levels.
- Our average result shows (in this case: As_2S_3 fiber with a 2.8 μ m pump):
	- \Box a bandwidth of 3 μ m
	- **□** A fluctuation level of 5 dB in the mid-range

Thank you!

Let Us Meet Again

We welcome all to our future group conferences of Omics group internationalPlease visit:www.omicsgroup.com www.Conferenceseries.comhttp://optics.conferenceseries.com/

