Valencia, 2015

Bile Research Group

Alimentary Pharmabiotic Centre

Interfacing Food & Medicine http://apc.ucc.ie

Dr. Susan Joyce

Bacterial Bile Salt Hydrolase in the **Regulation of Host Lipid Metabolism & Circadian Rhythm: A Role in Probiotic Function?**

Cormac Gahan

APC, University College Cork, Ireland c.gahan@ucc.ie

Cork Institute of Technology

Microbe:Host Interactions

Vinolo et al. Nutrients 2011, 3(10), 858-876

& Bile acids act here Conjugate Generated Bile acid d a

Pharmabiotic Centre

Endocrine function: energy metabolism

BSH function: a probiotic effector?

Bacterial bile acid modifications in the gut:

Complexity:

Bile Acids: Wider potential significance

Alimentary Pharmabiotic Centre

2. Reabsorbed bile salts as signalling molecules regulating endocrine functions (obesity) Watanabe et al. 2006 Nature, 439: 484-489

Cell Metabolism

Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist

Sama I. Sayin,¹ Annika Wahlström,¹ Jenny Felin,¹ Sirkku Jäntti,² Hanns-Ulrich Marschall,¹ Krister Bamberg,³ Bo Angelin,⁴ Tuulia Hyötyläinen,² Matej Orešič,² and Fredrik Bäckhed^{1,5,*}

Cloning of BSH in *E. coli MG1655*:

Miranda et al. 2004. Infect Immun 72:1666-1676

In vitro human bile assays

Alimentary

E. coli strain colonises the mouse gut

Cronin M. et al. 2012. PLoS One. 2012;7(1):e30940.

EC-BSH1 significant in vivo activity

Total Plasma Tauro-Bile Acids

Reduction in T β MCA

EC-BSH1 reduced weight gain

Weight Gain

Cholesterol

Mono-colonise Germ-free mice

all n=5

Role in Reduced Cholesterol & Weight

-3.0

ы G F

Targets in Conventional Mice

armabiotic Centre

BSH:

- Trans-intestinal cholesterol excretion (TICE)
- **Reverse Cholesterol** transport (RCT)
- **Reduces lipid biosynthesis**

DCA and CDCA induce lipid signalling genes in Caco2 cells

Interfacing Food & Medicine

RT-PCR

Currently examining functional lipid transport using a transwell system 18 hours

Circadian Genes Switch by BSH1

in mice

Unconjugated bile acids enhance periodic expression of circadian genes *in vitro*

Dr. Kalai Govindarajan

Oral gavage alters ileal circadian gene expression 🔁

Unconjugated bile acids enhance periodic expression of circadian genes *in vivo*

Alimenta

armabiotic Centre

Dr. Kalai Govindarajan

facing Food & Medicine

- Well known that bile synthesis is governed by circadian rhythm
- We show that bacterial activity alters the signalling potential of bile with an influence upon peripheral rhythms
- Potential for probiotic intervention?
- Thaiss CA et al 2014. Cell. Diurnal oscillations in gut bacteria!

BSH role in local homeostasis?

Conventionally-raised mice

wild-type

RegIIIγ^{/-}

The Antibacterial Lectin RegIII γ Promotes the Spatial Segregation of Microbiota and Host in the Intestine

Shipra Vaishnava,¹ Miwako Yamamoto,¹ Kari M. Severson,¹ Kelly A. Ruhn,¹ Xiaofei Yu,¹ Omry Koren,³ Ruth Ley,³ Edward K. Wakeland,¹ Lora V. Hooper^{1,2}*

SCIENCE VOL 334 14 OCTOBER 2011

abiotic Centre Interfacing Food & Medicine

- BSH important for bacterial colonisation (mutualism?)
- Expression of BSH (single gene/function) in the gut significantly influences local and systemic responses
- Allelic variation was significant (BSH1 versus BSH2)
- Expression of BSH1 influences body weight and serum cholesterol possible pathways identified

Joyce et al. 2014. PNAS. 111(20):7421-6.

Joyce et al. 2014. PNAS. 111(20):7421-6.

Alimentar

Pharmabiotic Centre

Functional Annotation of the Microbiome

Systems Approach: What's there?

Reductionist: What are they doing?

Culture-independent (sequencing, proteomics)

Single protein effects on system

armabiotic Centre

Single organism / protein

Future? Selecting Probiotics

UPLC-MS analysis of bile conversions

nabiotic Centre

Profiling cloned BSHs and whole probiotics (left)

Some probiotics have BSH but no demonstrable activity

Sarah Louise Long

Probiotics selected on the basis of BSH activity show a trend towards inducing weight loss in mice

Currently testing in a diet-induced obesity model

% weight gain week 7 40-30 % weight gain 20 10 **N** Strain AS JCMIOA6H 86 Train 10 Strain 63

- Mechanisms/pathways/circadian rhythm
- Relating BSH structure to function & selection of probiotics
- Analysis of bile acid metabolism in human disease states

Gut Microbes Addendum

'bacterial bile salt hydrolase in host metabolism.....'

Editor In Ohief Gall Hecht MD Josefe Networty Smith Educid of Middane Miganed, R. 154

Volume 3 + tasse 3 + September: October

Associate Editors

Photo Course of Wester Courses

Channelin of Strephone School of Strephone

County of Reservation, 48

Stang Classrook

State Departure

Dennis of Valuet

Ratingue (Incomp Start & Making

Ryle Collar of Solice

Samuel & province

Iditorial Roard

there is because	
Mara, Alasi Terrarah Mindra	1
Date (and)-a	4
Robert (part) Groups had (from)	1
Here & Alexan Hereit & Barling	1
Delighten Milder Onerrop	1
therein a the second	1
Renal Parents	1

Original Photo: Dr. Debbie Watson

Acknowledgements

Dr. Susan Joyce

Dr. John MacSharry Dr. Susan Joyce

Dr. Kalai Govindarajan

Pat Casey

Dr. Michael Kinsella

Dr. Eileen Murphy

Sarah-Louise Long

Prof. Colin Hill Prof. Fergus Shanahan

Dr. Julian Marchesi Dr. Brian Jones

Dr. Paul Cotter Frances O'Brien & Staff of BSU

Dr. Carthage Moran Dr. Marcus Claesson

http://apc.ucc.ie

Take home message

& Bile acids act here

Intervention?

Bile acids act here

Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

Sungsoon Fang¹et al. 2015

UPLC-MS

http://apc.ucc.ie

UPLC-MS Approach to detect 30 Bile Acids

Intervention Alters Plasma Bile Acid Profiles in Mono-colonised Mice:

Conjugated Bile acid

Unconjugated Bile acid

Reduction in T β MCA

Intestinal Bacteria

microbiota

...a hidden organ

- More bacteria (10¹⁴) than human cells (10¹³) in the body
- Approx 2000
 bacterial phylotypes
 in human intestine
- Significant metabolic activity

The Human Superorganism

Microbiologists – Our Time Has Come !

Metabolism > Liver

- Energy extraction fat deposition
- Immune stimulation
- Barrier to infection

Early study

Eckburg PB. et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635-1638.

Cloning and expression of gut BSH enzymes in *Listeria innocua:*

BSH enhances survival of *Listeria innocua* in bovine bile:

BSH enhances gut colonization in conventional mice (day 3 PI)

BSH expressed in *Listeria innocua*:

Jones, B, Begley, M et al, 2008. Proc Natl Acad Sci USA, 105:13580-13585

Microbial Bile salt hydrolase activity

Conjugated Bile acid

Unconjugated Bile acid

BSH catalyses the 'gateway reaction'

dehydroxylation

dehydrogenation

Precipitate on Tauro-Bile plates

Functional Metagenomics - diversity of BSH activity in gut bacteria

Dr. Brian Jones & Dr. Julian Marchesi

- High Mw DNA was extracted from a faecal sample from a healthy male
- Fosmid bank consisting of 89856 metagenomic clones

Functional Annotation of the Microbiome

Systems Approach: What's there?

Reductionist: What are they doing?

Culture-independent (sequencing, proteomics)

Single protein effects on system

armabiotic Centre

Single organism / protein

Intervention Alters Plasma Bile Acid Profiles in Mono-colonised Mice:

Conjugated Bile acid

Unconjugated Bile acid

Reduction in T β MCA

y iotic Centre

BSH - associated only with bacteria from the gut or gut pathogens (groups A and B)

A related enzyme - PVA is present in gut & non-gut bacteria but does not have BSH activity (group C)

Gut *Archea* (marked 1 and 2) have evolved potent BSH activity whereas non-gut *Archea* (marked 3) do not express active BSH

Proc Natl Acad Sci U S A. 2008. 105(36):13580-5.

60 days - Strep

Cronin M. et al. 2012. PLoS One. 2012;7(1):e30940.

Alimentary

Pharmabiotic Centre

Quantitative UPLC-MS

Alimentary Pharmabiotic Centre

http://apc.ucc.ie

Analyte	RT	FORMULA	Mol. Wt.
Taurine	0.75	$C_2H_7NO_3S$	124.0068
Dehydrocholic acid	1.71	$C_{24}H_{34}O_5$	498.2889
Tauro B Muricholic acid	1.87	$C_{26H_{44}NO_7S}$	514.28385
Deoxycholic Acid	1.9	$C_{24}H_{40}O_4$	391.2848
Taurodeoxycholic acid	3.39	$C_{26}H_{44}NO_6S$	498.2889
Taurocholic acid	4.82	$C_{26}H_{45}NO_7S$	514.2838
Alpha Muricholic acid	5.89	$C_{24}H_{40}O_5$	407.27975
Beta Muricholic acid	6.26	$C_{24}H_{40}O_5$	407.27975
Tauro-Chenodeoxycholic acid	8.39	$C_{26}H_{44}NO_6S$	498.2889
Ursodeoxycholic acid	8.57	$C_{24}H_{40}O_4$	391.2848
Cholic acid	11.76	$C_{24}H_{40}O_5$	407.27975
Taurolithocholic acid	14.252	$C_{26H_{45}NO_5S}$	482.207
Chenodeoxycholic acid	17.63	C ₂₄ H ₄₀ O ₄	391.2848
Lithocholic Acid	21.72	$C_{24}H_{40}O_3$	375.2899

Internal Standards: Deuterated Chenodeoxycholic acid and Cholic acid

