

Sensorial and skeletal ontogenesis: an useful tool for the optimization of larval rearing of new candidate species for aquaculture and not

only!

Clara Boglione University of Rome Tor Vergata, Italy

..... and not only!

- Environmental monitoring
- Investigation on other threats than fishery on wild stocks
- Ecotoxicology
- Evolutionary aspect (i.e., domestication process; global climatic changes)
- Basic research: autoecology of different species and life stages
- Aquaculture of new candidate species

Basic research: autoecology of different species and life stages

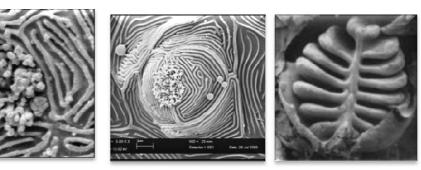
Organs for chemoreception: taste buds olfaction

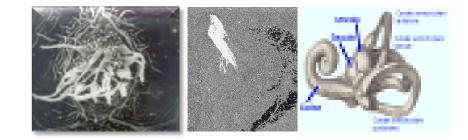
solitary chemoreceptive cells

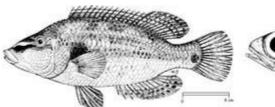
- O₂- CO₂ receptors ??
- Organs for mechanoreception:
 - lateral line system

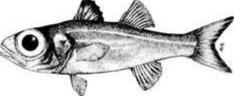
inner ear

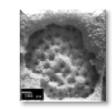
cutaneous nociceptor ??


Organs for visual reception:


eye

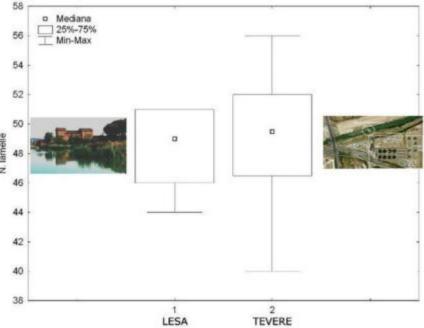

Organs for electroreception:


ampullary organs, tuberous organs


Sense organs in Teleosts

Environmental monitoring

Liza ramada



7 mullets from the LESA' artificial lake

- Significant (p<0,5) differences in the lamellae'numbers between the two groups
- Spearman's rank correlation coefficient highlighted (R = 0.05) no correlations between fish sizes and lamellae numbers, either between size of olfactory rosetta and lamellae number.

15 mullets from Tiber River (Rome) sampled downstream a municipal wastewater treatment plant outfall

Investigation on other threats than fishery on wild stocks

Chemical spying

Boglione: unpub. data

Thunnus thynnus thynnus 2.3 m SL

G.R. Scott, K.A. Sloman / Aquatic Toxicology 68 (2004) 369-392.

Fish

Disnuted

Reference

Hardness (mg/l

Table 2 Literature summary of the effects of pollutants on fish predator avoidance behaviours

LOEC² (a.g/l) Duration

Pollutant

Investigation on other threats than fishery on wild stocks

Polinitant	LOEC~ (µgil)	Duration	Hardness (mg/l as CaCO ₃) ^b	Fish species ^c	behaviour ^d	Keterence
Metals						
Cadmium	375	48 h	41	fhm	Survival	Sullivan et al. (1978)
	25	21 days	349	fhm	Survival	Sullivan et al. (1978)
	2	7 days	120	rbt	AS response	Scott et al. (2003)
Copper	43ª	24 h	124	epm	AS response	Beyers and Farmer (2001)
	56*	96 h	124	cpm	AS response	Beyers and Farmer (2001)
	100	5 h pulse	SW	asi	Schooling	Koltes (1985)
	10	7 days	SW	mc	Survival	Weis and Weis (1995)
Mercury	10	24 h	-	mq	Survival	Kania and O'Hara (1974)
10	5	14 days	SW	mc	Schooling	Ososkov and Weis (1996)
	5	\geq 7 days	50% SW	mc	Survival	Zhou and Weis (1998)
	0.959 ^f	90 days	-	gs	Schooling	Webber and Haines (2003)
Organic pollutan	ats					
Atrazine	5	24 h	-	gf	AS response	Saglio and Trijasse (1998)
Carbaryl	10	96 h	272	rbt	Survival	Little et al. (1990)
2 0	700	24 h	40	md	Survival	Carlson et al. (1998)
Chlordane	2	96 h	272	rbt	Survival	Little et al. (1990)
Chlorpyrifos	270	24 h	40	md	Survival	Carlson et al. (1998)
DDT	1	3 days	-	gf	Schooling	Weis and Weis (1974b)
DEF	50	96 h	272	rbt	Survival	Little et al. (1990)
2,4-DMA	50000	96 h	272	rbt	Survival	Little et al. (1990)
Diazinon	1.0	2 h	65	CS	AS response	Scholz et al. (2000)
DNP	10000	24 h	40	md	Survival	Carlson et al. (1998)
Diuron	5	24 h	-	gf	AS response	Saglio and Trijasse (1998)
Endosulfan	1	24 h	40	md	Survival	Carlson et al. (1998)
Fenvalerate	1	24 h	40	md	Survival	Carlson et al. (1998)
1-Octanol	17800	24 h	40	md	Survival	Carlson et al. (1998)
Parathion	100	96 h	272	rbt	Survival	Little et al. (1990)
PCP	500	1-4 week	-	gp	Survival, pursuit tune	Brown et al. (1985)
	0.2	96 h	272	rbt	Survival	Little et al. (1990)
Phenol	25900	24 h	40	md	Survival	Carlson et al. (1998)
	7000	96 h	-	rbt	Survival	Schneider et al. (1980)
Sevin	100	24 h	SW	asi	Schooling	Weis and Weis (1974a)
Sumithion	1000	24 h	121	as	Survival	Hatfield and Anderson (1972)
TBTO	3	Not specified	10	tsb	Visual predator response	Wibe et al. (2001)

Effects of pollutants on fish avoidance behaviours (reaction to alarm substances, response to predators, survival, schooling)

^a Lowest observable effect concentration.

^b Exposure in freshwater unless otherwise stated; SW, seawater,

^c Abbreviations: as, Atlantic salmon (Salmo salar); asi, Atlantic silverside (Montdia manidia); cpm, Colorado pikeminnow (Ptycholochathus lucius); cs, chinook salmon (Oncorhynchus tshawytscha); fhm, fathead minnow (Pimephales promelas); gf, goldfish (Carassius auratus); gp, guppy (Poecilia raticulata); gs, golden shiners (Notemigonus crysoleucas); mc, munnnichog (Fundulus heteroclitus); md, medaka (Oryzias latipes); mq, mosquitofish (Gambusia affinis); nti, nile tilapia (Oreochromis niloticus); rbt, rainbow trout (Oncorhynchus mykits); tsb, threespine stickleback (Gasterosteus aculaatus).

^d AS: alarm substance.

* EC50, concentration estimated to inhibit behaviour in 50% of test organisms, see text.

^f Dietary exposure, µg/g dry food weight.

Investigation on other threats than fishery on wild stocks

Effects of heavy metals and organic pollutants on **fish reproductive behaviours** (homing, nesting, spawning, courtship, fecundity)

374

G.R. Scott, K.A. Sloman / Aquatic Toxicology 68 (2004) 369-392

Table 3 Literature summary of the effects of pollutants on fish reproductive behaviours

Pollutant	LOEC (µg/l)	Duration	Hardness (mg/l as CaCO3)	Fish species ^a	Disrupted behaviour	Reference
Metals						
Cadmium	0.5	48 h	30	bko	Homing	Baker and Montgomery (2001)
Copper	22	37 weeks	61	rbt	Homing	Saucier et al. (1991)
handrade exercit	20	40 weeks	61	rbt	Homing	Saucier and Astic (1995)
Lead	500	30 days	130	fhm	Nesting	Weber (1993)
Mercury	0.88 ^b	To sexual maturity		fhm	Spawning	Hammerschmidt et al. (2002)
Organic pollutants						
Diazinon	10.0	24 h	65	CS	Migration	Scholz et al. (2000)
p,p'-DDE	0.1 ^b	30 days	-	gp	Courtship	Baatrup and Junge (2001)
Endosulfan	0.6	≥10 days	291	ci	Courtship/ nest maintenance	Matthiessen and Logan (1984)
Esfenvalerate	1.0	Pulsed	-	bg	Spawning	Tanner and Knuth (1996)
17β-estradiol	1	24-28 days	<u>8</u>	gf	Courtship	Bjerselius et al. (2001)
	10 ^b	24-28 days	<u> </u>	gf gf	Courtship	Bjerselius et al. (2001)
	0.05	10 weeks	<u> </u>	gf	Courtship/ spawning	Schoenfuss et al. (2002)
	3 ^b	14 days	-	md	Courtship/ spawning	Oshima et al. (2003)
Ethynyl estradiol	488	21 days	44-61	md	Fecundity	Seki et al. (2002)
Flutamide	1.0 ^b	30 days	-	gp	Courtship	Baatrup and Junge (2001)
Lindane	1.0	7 days		gp	Courtship	Schröder and Peters (1988a,b)
Octylphenol	25	6 months	-	md	Courtship/ success	Gray et al. (1999)
Phenol	10000	48 h		gp	Courtship/ spawning	Colgan et al. (1982)
Vinclozolin	1.0 ^b	30 days		gp	Courtship	Baatrup and Junge (2001)

^a Abbreviations: bg, bluegill (Lepomis macrochirus); bko, banded kokopu (Galaxias fasciatus); ci, cichlid (Sarotherodon mossambicus); cs, chinook salmon (Oncorhynchus tshawytscha); fhm, fathead minnow (Pimephales promelas); gf, goldfish (Carassius auratus); gp, guppy (Poecilia reticulata); md, medaka (Orvzias latipes); rbt, rainbow trout (Oncorhynchus mykiss).

^b Dietary exposure, µg/g dry food weight.

Investigation on other threats than fishery on wild stocks


Effects of heavy metals and organic pollutants on **fish nonreproductive social behaviours** (agonism, dominance, territoriality)

Table 4

Literature summary of the effects of pollutants on fish non-reproductive social behaviours

Pollutant	LOEC ($\mu g/l$)	Duration	Hardness (mg/l as CaCO3)	Fish species ^a	Disrupted behaviour	Reference
Metals						
Cadmium and zinc	40 and 124	15 days	340	bg	Agonistic	Henry and Atchison (1979a)
	21 and 99	3 days	340	bg	Agonistic	Henry and Atchison (1979b)
Cadmium	3	24 h	120	rbt	Agonistic/dominance	Sloman et al. (2003b)
	2	24 h	120	rbt	Dominance	Sloman et al. (2003c)
Copper	34	96h	273	bg	Agonistic	Henry and Atchison (1986)
Nickel	1500	96h	_	nti	Agonistic	Alkahem (1994)
Organic pollutants						
Carbofuran	10	4 h	140	gf	Agonistic	Saglio et al. (1996)
Esfenvalerate	0.1	44 h pulses	283	bg	Agonistic	Little et al. (1993)
Ethynyl estradiol	0.015	Variable	-	tsb	Agonistic	Bell (2001)
Fenitrothion	1000	16h	13	as	Territoriality	Symons (1973)
Methyl parathion	1000	5 days	-	sf	Agonistic	Welsh and Hanselka (1972)
Prochloraz	10000	15 min	-	gf	Agonistic	Saglio et al. (2001)

^a Abbreviations: bg, bluegill (Lepomis macrochirus); gf, goldfish (Carassius auratus); nti, nile tilapia (Oreochromis niloticus); rbt, rainbow trout (Oncorhynchus mykiss); sf, Siamese fighting fish (Betta splendens); tsb, threespine stickleback (Gasterosteus aculeatus).

behaviour links physiological function with ecological processes

- Water pollution
- Aquaculture
- Pollution + Aquaculture

G. R. Scott, K. A. Sloman, 2004. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity Aquatic Toxicology, 68: 369–392

Differences in Lateral Line Morphology between Hatchery- and Wild-Origin Steelhead

Andrew D. Brown¹^a, Joseph A. Sisneros², Tyler Jurasin³, Chau Nguyen⁴, Allison B. Coffin^{4,5}*

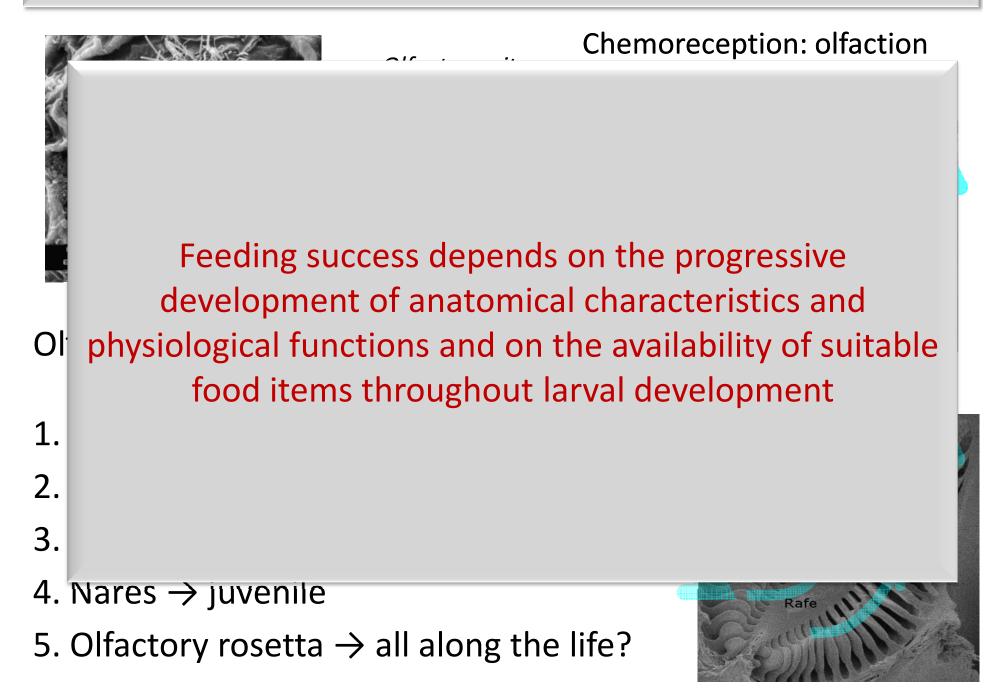
- Wild juveniles were found to possess primarily normal, aragonite-containing otoliths, while hatchery-reared juveniles possessed a high proportion of crystallized (vaterite) otoliths.
- Wild juveniles had significantly more superficial neuromasts than hatchery juveniles
- Hair cell number per neuromast did not differ across groups
- Reduced brain weight in hatchery-origin juveniles

These differences together predict reduced sensitivity to biologically important hydrodynamic and acoustic signals from natural biotic (predator, prey, conspecific) and abiotic (turbulent flow, current) sources among hatchery-reared steelhead, in turn predicting reduced survival fitness after release.

Mechanoreceptors developments whereas the eyes and task larvae. Mechanisms involved in this study. The formation of coincids, respectively, with the change from pelagic taste buds are formed, wild larva zooplankton *Paracalanus parvus*.

 earlier in the reared larvae, Is de lor orlier in the wild rtained
 DOMESTICATION PROCESSES IN COURSE ?
 FAILURE OF RESTOCKING PROGRAMS ?

Food search, localization and evaluation


Aiming and Seizing:

1 - 0.25 m and olfaction, hearing, sight, lateral line, outer chemoreception

<0.25 m sight , lateral line, chemoreception, electroreception, touch

Oral processing + Evaluating quality 0 m > inner chemoreceptors, touch

Basic research: autoecology of different life stages

REVIEWS IN Aquaculture

Reviews in Aquaculture (2013) 5 (Suppl. 1), S59-S98

doi: 10.1111/rag.12010

Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research

Ivar Rønnestad¹, Manuel Yúfera², Bernd Ueberschär³, Laura Ribeiro⁴, Øystein Sæle⁵ and Clara Boglione⁶

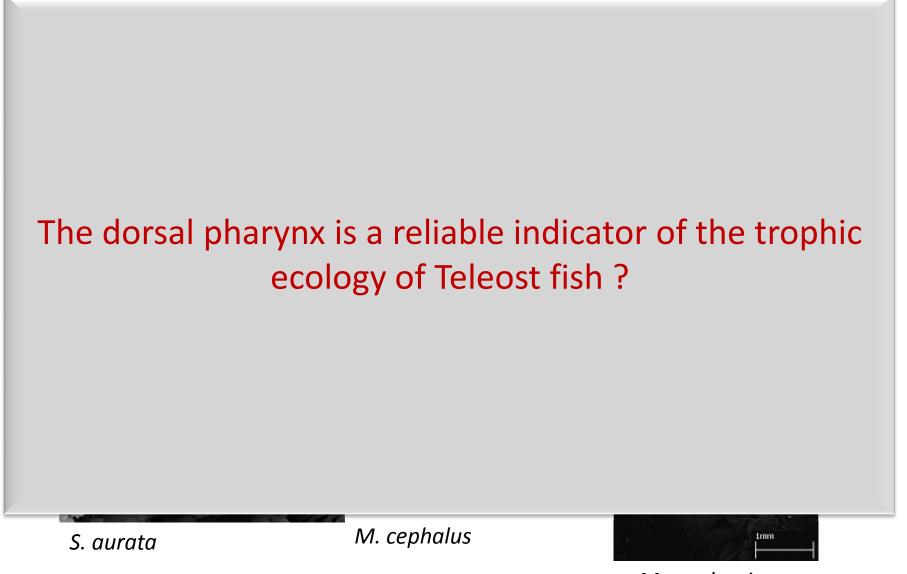
Different typologies reflect functional differences (i.e., only gustatory, also tactile)

The localization indicates the role plaid (aiming, sizing, final evaluation) and the range of detection.

BIG II TIP

BG II I TIPO

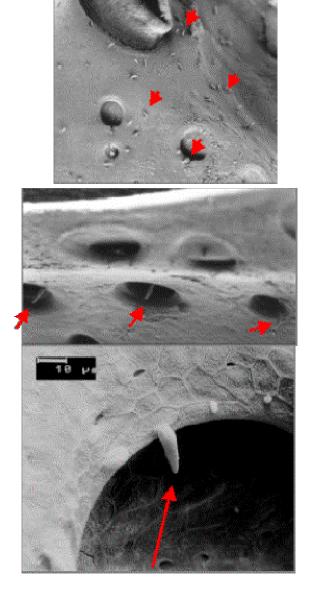
Very few data exist on the ontogenesis of taste buds in reared fish, and the individual ontogenic stages of different types of taste bud still need to be defined.



Pulcini and Boglione: unpub. data

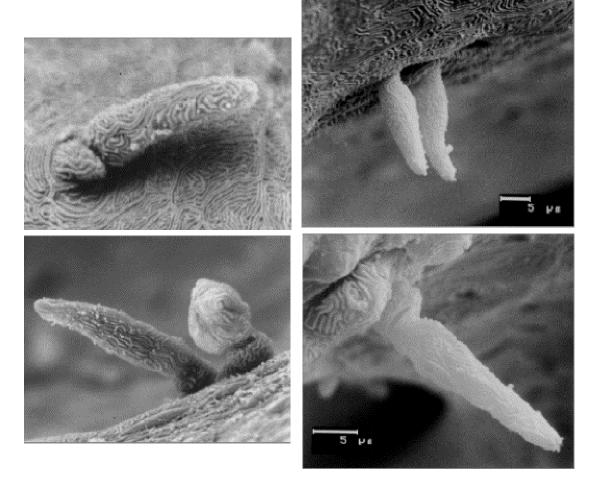
BO IN TIRO

Boglione: unpub. data

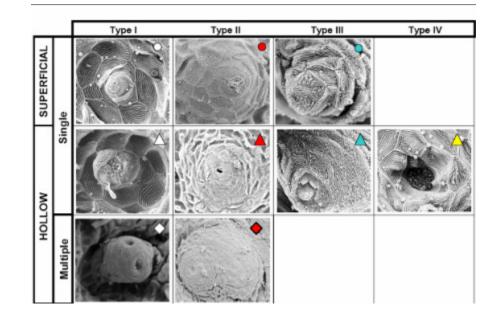


M. merluccius

Basic research: autoecology of different species


Differences in the olfactory organs mainly reflect the developmental stage, autoecology and osmatic capabilities of the species

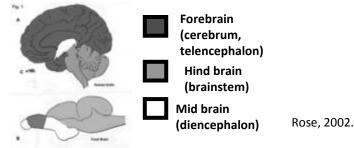
	Eninonholus marainatus						
	REVIEWS IN Aquaculture						
	Reviews in Aquaculture (2013) 5 (Suppl. 1), 559–598 doi: 10.1111/raq.12010						
	Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research Ivar Rønnestad ¹ , Manuel Yúfera ² , Bernd Ueberschär ³ , Laura Ribeiro ⁴ , Øystein Sæle ⁵ and Clara Boglione ⁶						
	A different complexity of olfactory organs reflect						
	different responsiveness a chemical stimuli.						
	Olfaction is more effective to detect extremely						
	diluted substances than gustatory system which						
Sensoria ciliate ce	demands for higher concentrations (Caprio, 1982)						
	Hyposmatic fish mainly localize food by sight!!						


New questions:

1. All the sense organs have been described in Teleosts?

2. Is the O₂- or the CO₂ receptions carried out by different organs or is a function carried out by taste buds ?

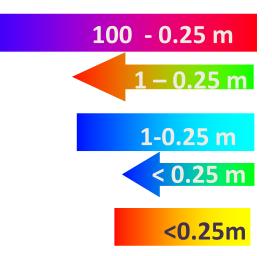
- Taste buds: already ascertained chemo- or chemo- and mechanoreception (Reutter, 1973) for feeding and protective functions
- In Salmonids and Cyprinids: the exposition of dorsal pharynx (rich in taste buds) to high CO₂ or H⁺ levels (hypercapnia, anoxia) determines an immediate increase of respiratory movements (Jobling, 1995).

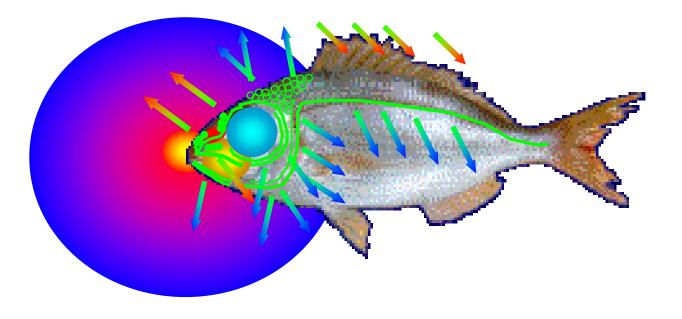


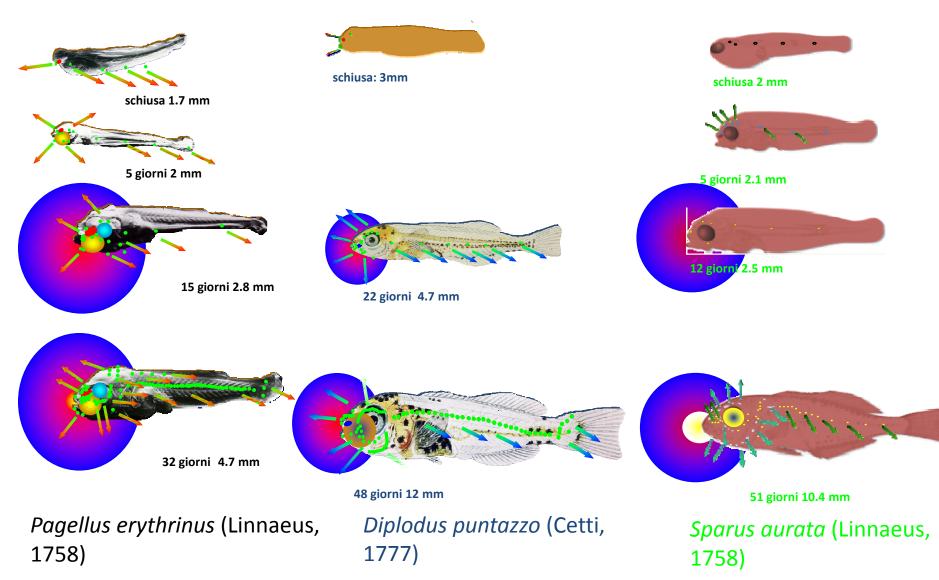
3. Do fish possess nociceptors ?

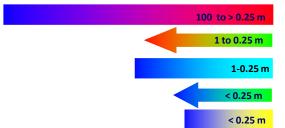
Neuroanatomical evidences highlight that fish have nocireception but not a neocortex: homologous or different organs ?

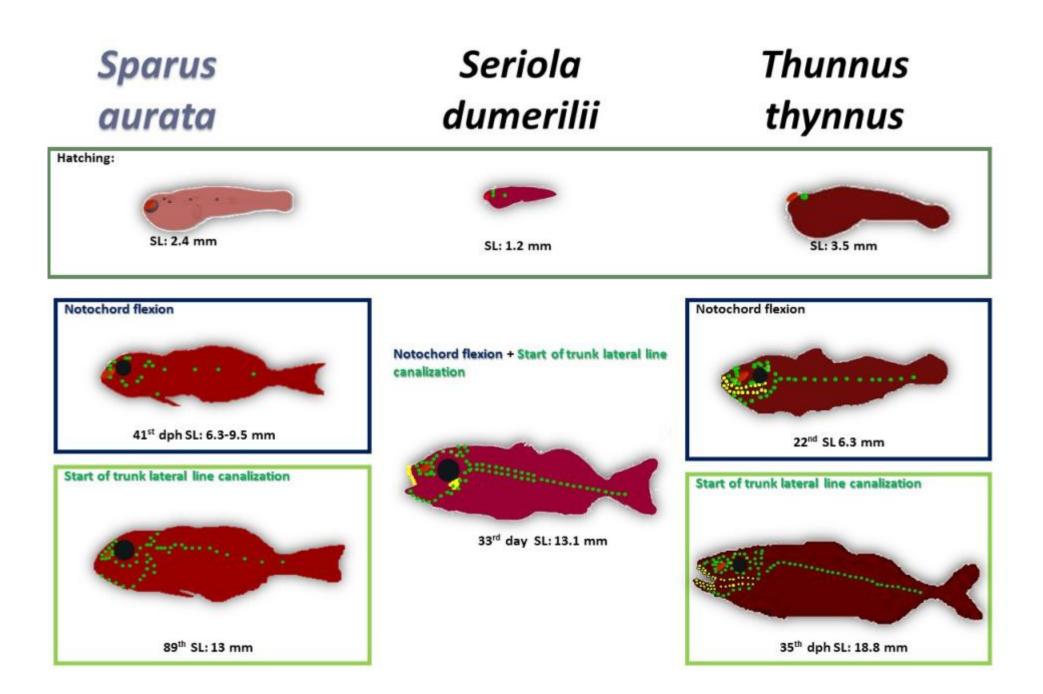
Behavioral evidences highlight that fish do evade, if they can, any pain. Further, they are able to evaluate negative and positive stimuli and modulate consequently their behavior.

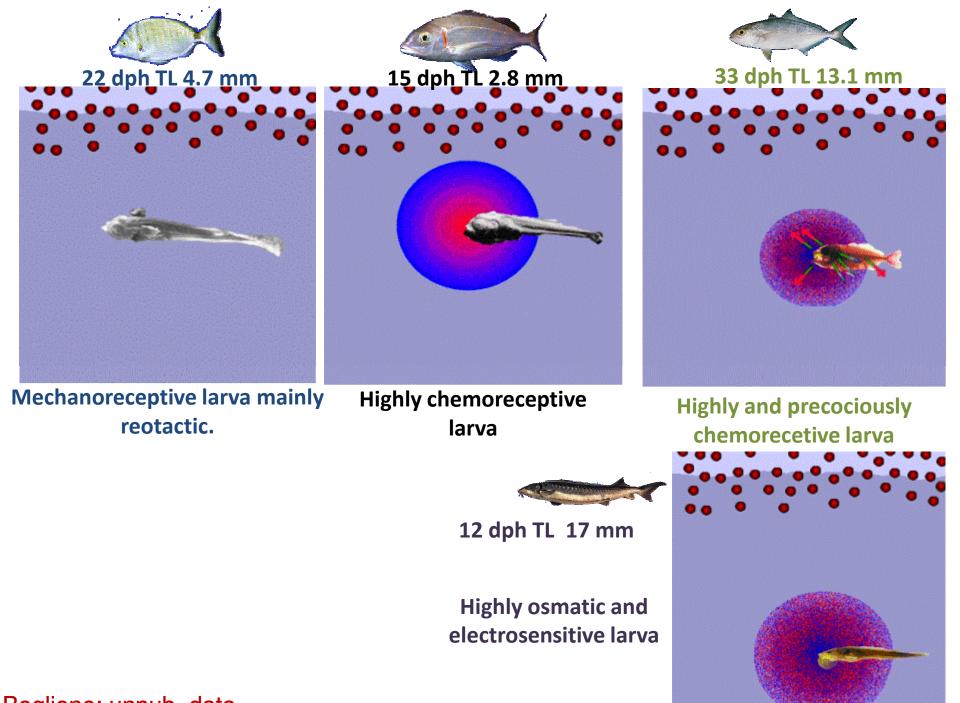

TASTE BUDS


Different typologies reflect functional differences (i.e., only gustatory, also tactile) The localization indicates the role plaid (aiming, sizing, final evaluation) Food uptake follows rules defined by feeding behavior that determines the kind and quantity of food ingested by fish larvae as well as how live prey and food particles are detected, captured and ingested. Very few data exist on the ontogenesis of taste buds in reared fish. olfaction


free neuromasts

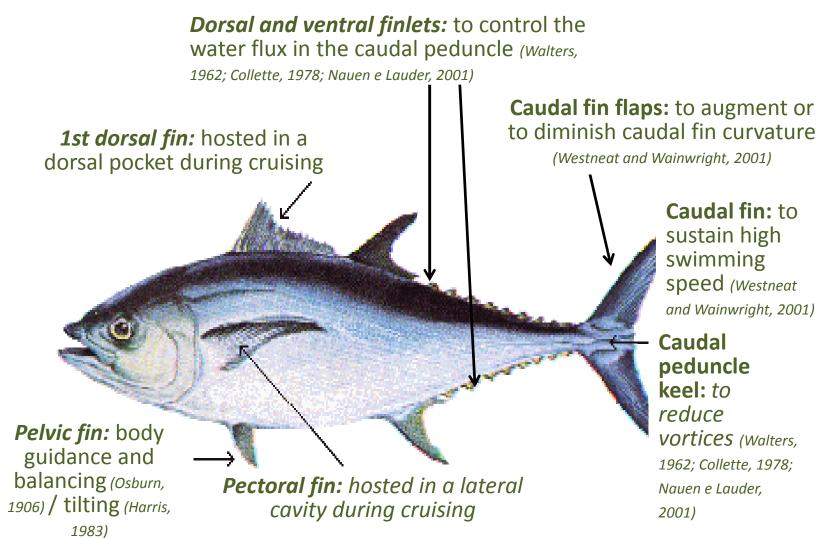

sight canalized neuromasts


chemoreceptors



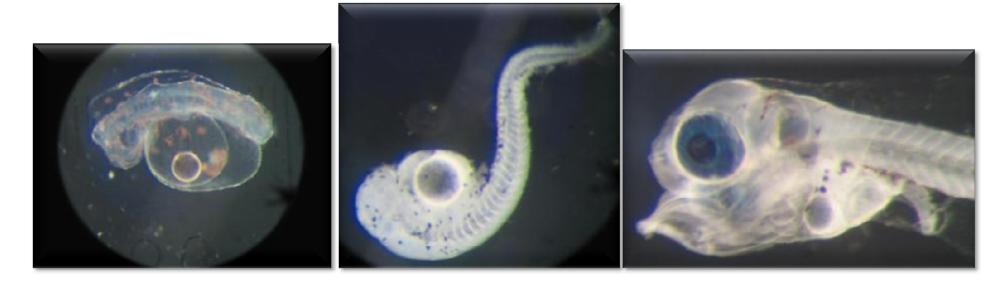
BFT TUNA 10 – 17 dph (TL 4.2-5.6 mm): Differentiation of all organs involved in FEEDING

Allometric developmental phase (head of juveniles; trunk of a larva)


CSCs + <u>early differentiation of MSCs</u> \rightarrow high olfactory skill able to chemically individuate preys at large range (> 100 m) (Pavlov and Kasumyan, 1990)

Large number of cephalic NMs, symmetrically arranged, with cupolae \rightarrow reotaxis + mecchanoreception of live preys (zooplankton) + schooling (Myrberg e Fuiman, 2002) + permanence and feeding in the water column (Iwai, 1980)

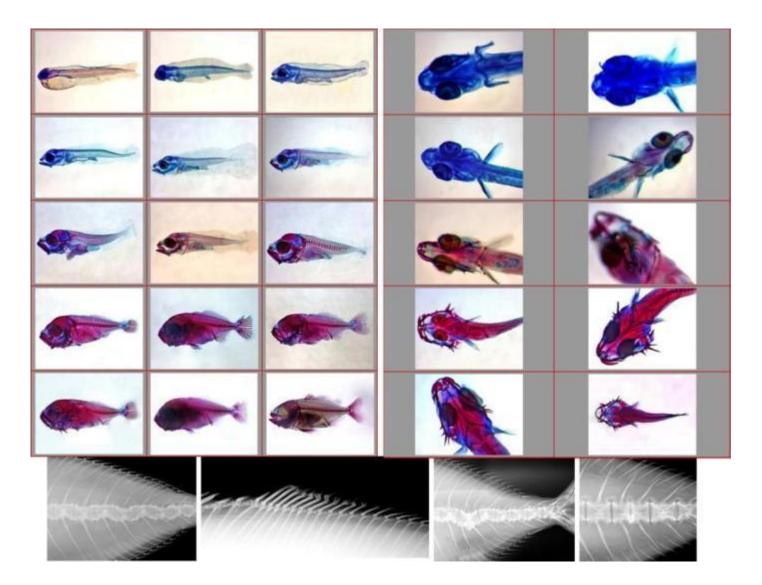
Canine-like teeth on buccal rims and in the pharynx \rightarrow feeding on ichthyoplankton (Harder, 1975)


Early differentiation of inner TBs (readsorbed in adults?) → final ingestion after organoleptic evaluation Boglione: unpub. data

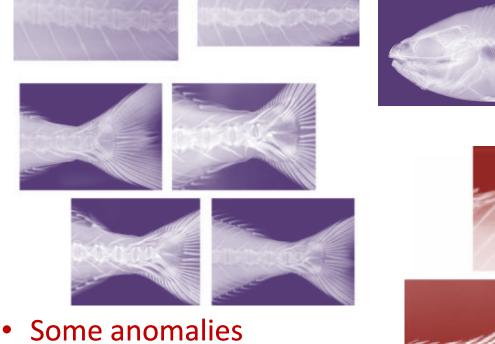
• Why to study <u>normal</u> skeletogenesis?

Fins ontogenesis marks the acquisition of peculiar, species-specific swimming behaviour that must be considered in evaluating what are the best rearing tanks/conditions

• Why to study <u>anomalous</u> skeletogenesis?



✓The presence of anomalous developmental processes is one of the consequences

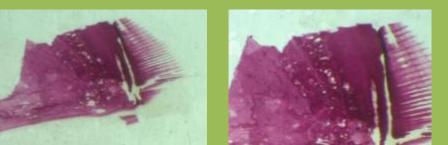

- of inappropriate rearing conditions
- of altered (temperature, salinity, chemical pollution) environment

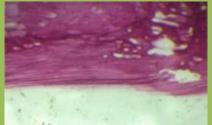
✓The ontogenetic pattern (onset timing and affected skeletal elements) can help the individuation of species-specific critical periods for aquaculture or the exposition time to altered conditions

Greater amberjack (Seriola dumerili)

- the anomalies incidence tend to augment with age, with 322 dph lots showing the highest incidences of anomalies
- severe anomalies tend to diminish with age, probably indicating a selective death for those individuals affected by such anomalies

 Some anomalies could be ascribed to limited space availability !!!!





Identification of anomalous mineralization in wild adult tuna?

SUBOPERCULAR

PREOPERCULAR

INTEROPERCULAR

BFT differentiate all the elements involved in *cruising* in a TL range = 6.3 – 48.8 mm

- ✓ 1st ,2nd ,3rd and 4th hypuralia fuse to form hypural plate, LT = 14,5 mm → to increase the stiffness of caudal fin (Collette, 1978)
- \checkmark caudal fin flaps, LT = 8,6 mm, connected with *flexors ventralis* and *dorsalis* muscles
 - → to augment or to diminuish caudal fin curvature (Westneat e Wainwright, 2001)
- ✓ principal caudal rays inserted medially to the hypural plate by robust tendons (subdermal sheath) (LT 13,3 mm) → to sustain high swimming speed (Westneat e Wainwright, 2001)
- ✓ hypural plate is connected to the 6 posteriormost myosepta by big tendons → for stiffening the caudal peduncle and/or for supporting lateral keels (Fierstine e Walters, 1968)

✓ two lateral and 1 medial keels
✓ 8 dorsal and 7 anal finlets

to control the water flux in the caudal peduncle, to reduce vortices (Walters, 1962; Collette, 1978; Nauen e Lauder, 2001;)

In Tuna, the 100% of force generated by axial muscles is transmitted to the caudal fin (Gibb et al., 1999) Boglione: unpub. data

Skeletal anomalies analysis

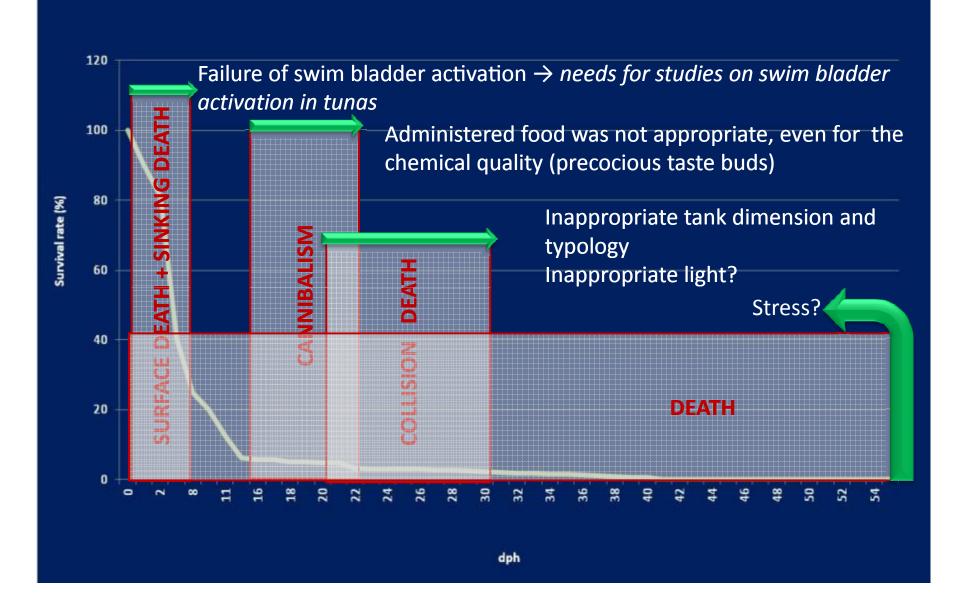
	15-30 dph	35-41 dph	56-84 dph	Wild
N of observed individuals	24	206	78	22
Rate of malformed individuals	100%	100%	100%	0%
Malformation charge	5.7	11.8	12.4	0
Observed anomalies typologies	15	49	30	0
Rate of severely deformed individuals	100%	100%	96.2%	0%
Ratio severe/light anomalies	32.1	31.1	20.0	0
Severe anomalies charge	1.8	3.6	2.6	0

All reared tunas has at least one anomaly; malformation charge augment with age; 35-41 dph seems to be the more 'deformed' stage;

100% of 15-41 dph tunas had abortive swim bladder

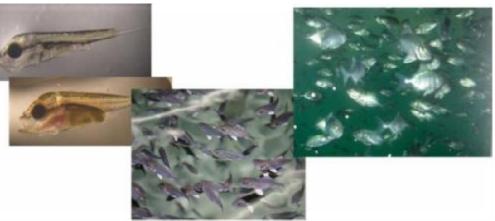
Some tunas with SL ranging 10 - 37 mm exhibited a broken palatine

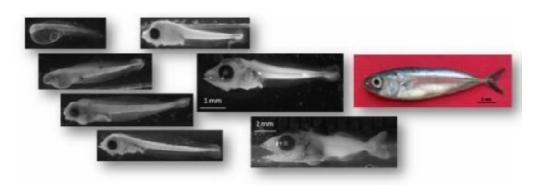
COLLISIONS ON TANK WALLS


Underdeveloped scotopic vision in tuna juveniles than in other marine juveniles (Ishibashi *et al.*, 2009).

┿

Cruising ability of larvae


Differently from other reared marine finfish larvae, BFT larvae seem


- to be affected by developmental asynchronies;
- to be unable to activate swim bladder in rearing conditions, even in presence of superficial air skimmers;
- to be characterized by very precocious faster and continuous swimming (*cruising*), so demanding for larger rearing volumes;

I would like to thank Prof. Cataudella S and all my «students» of Tor Vergata

- Gianluca Amoroso
- Matilde de Francesco
- Maurizio Giganti
- Martina Marroncini
- Laura Orzali
- Marco Padroni
- Ylenia Pennacchi
- Loredana Prestinicola
- Domitilla Pulcini
- Simone Serra
- Claudio Selmo

Thanks for your attention