
Introduction

- Functional traits
- Genomics to system biology in animal science

OMICS for analyzing diseases in livestock species

- Genomics
 Iranscriptomics
- Proteomics

Conclusion

Will there be enough food to support the projected population of 9.2 billion in 2050?

Milk yield vs reproductive traits traits?

Is Reproductive Decline Caused by Greater Milk Production?

Milk production for United States Dairy cows has increased by approximately 20% in the last 10 yr (USDA

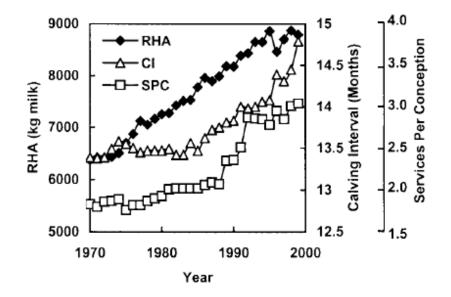


Figure 2. Rolling herd average (RHA, kg milk per lactation), calving interval (CI), and services per conception (SPC) for 143 dairy herds continuously enrolled in the Raleigh DHIA record system from 1970 to 1999 (personal communication, J. S. Clay, Dairy Records Management Systems, Raleigh, NC).

Data from Lucy et al, Journal of Dairy Science, 2001, 84(6): 1277-1293

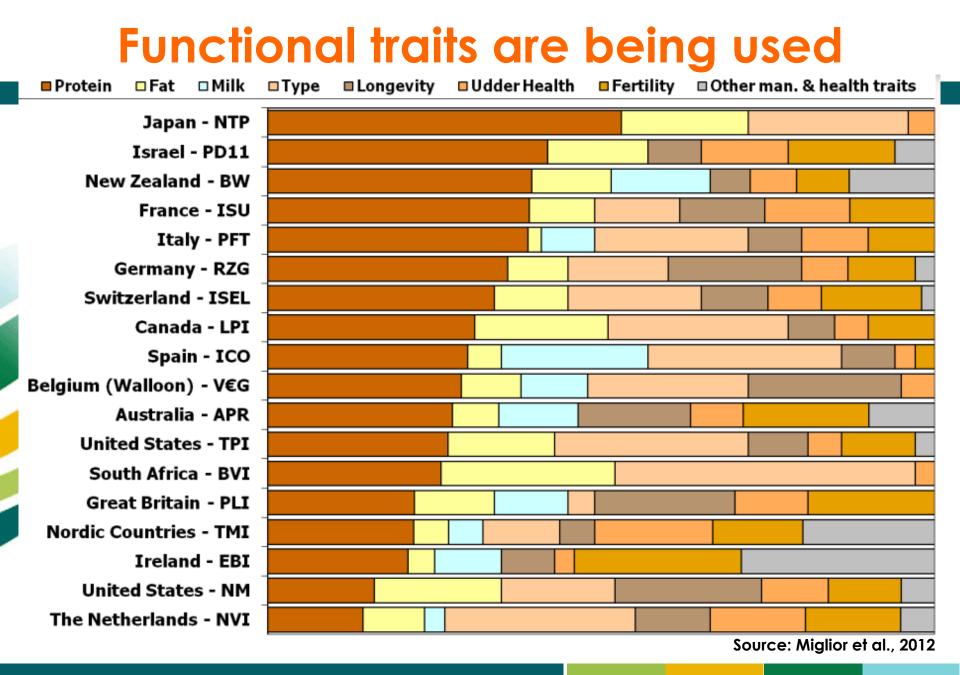
The Perfect Cow

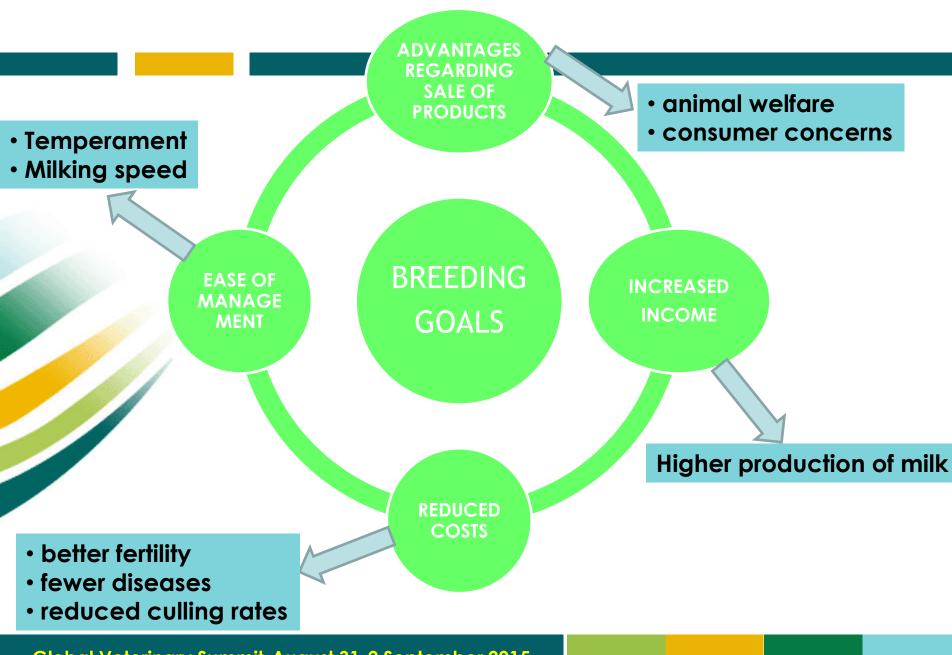
shows heat and few metabolic disorders, conceives when bred produces a live calf maintains body condition without assistance high milk yield, correct composition, resists mastitis, inexpensive ration, avoids injury low maintenance costs walks and stands comfortably, rarely needs trimming

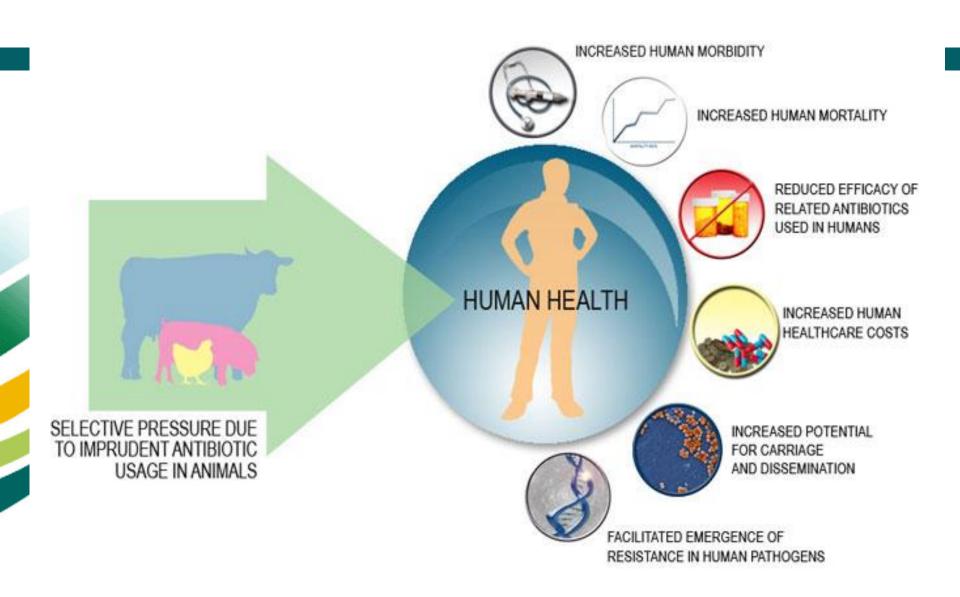
What are functional traits?

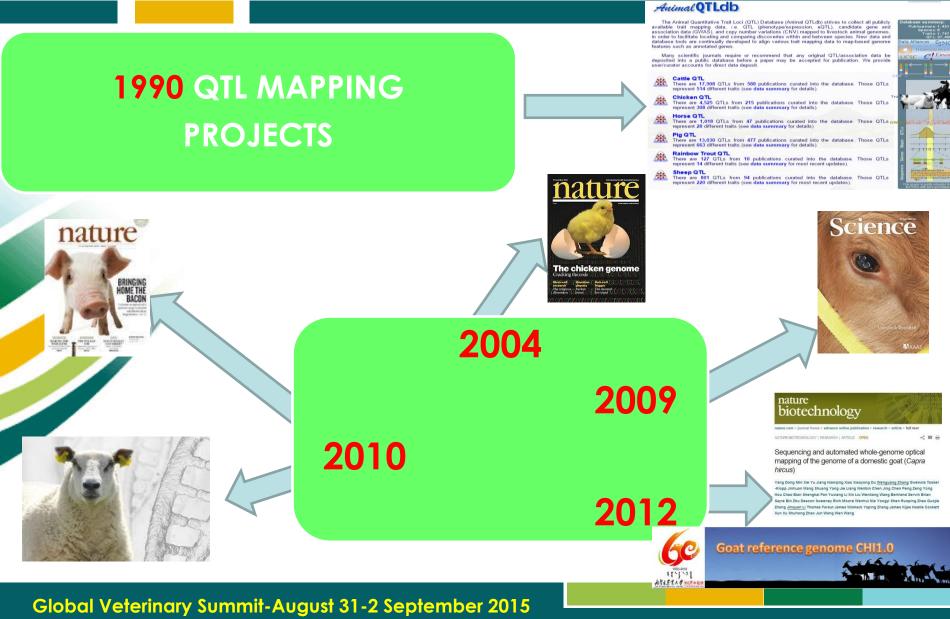
The ICAR* Functional Traits Working Group currently is working on:

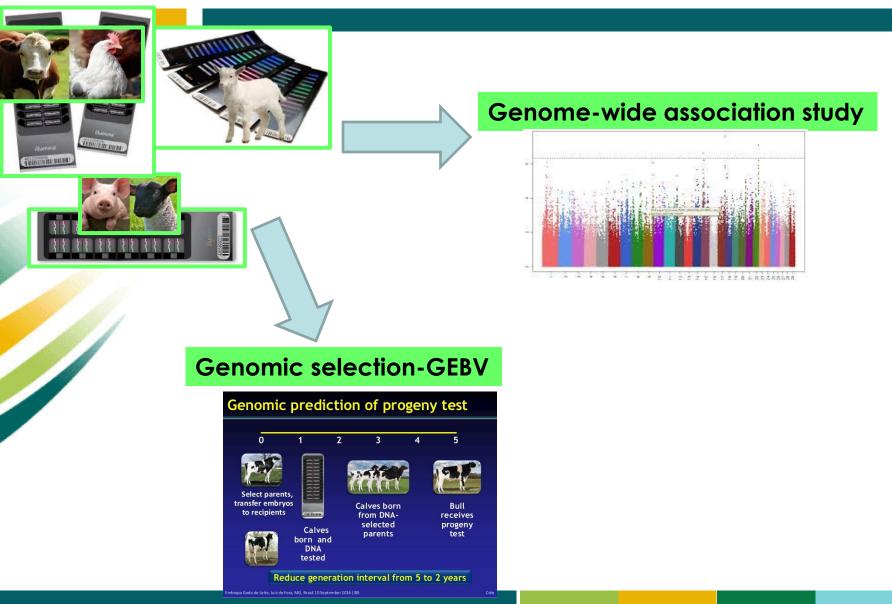
General health traits

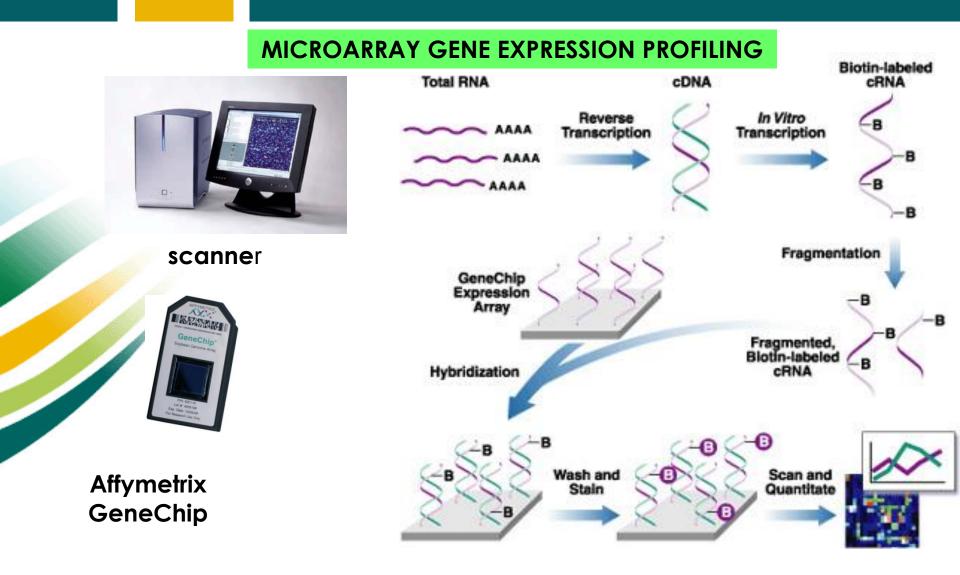

Female fertility

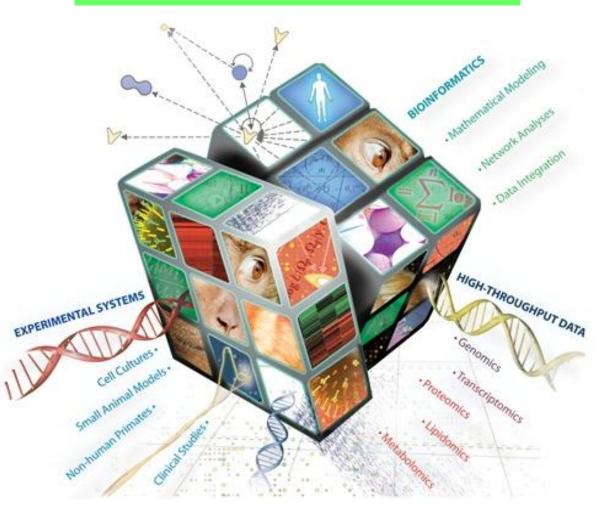

Feet and legs problems


Udder health


Workability


*International Commitee for Animal Recording





NEXT GENERATION SEQUENCING

	Genomics	Transcriptomics	Epigenetics
ay	Whole Genome Sequencing	mRNA Sequencing	Bisulfite Sequencing
Assay	Exome & Targeted Sequencing	miRNA Sequencing	ChIP-Sequencing
Analysis	SNVs & Somatic Mutations	Transcript Expression	DNA Methylation
	Copy Number Variations	Alternative Splicing	Histone Modifications
	Structural Re- arrangements	miRNA Expression	Regulation Events

WHAT IS THE SYSTEM BIOLOGY?????

How does it integrate OMICs data and phenotypes?

244

H.N. Kadarmideen / Livestock Science 166 (2014) 232-248

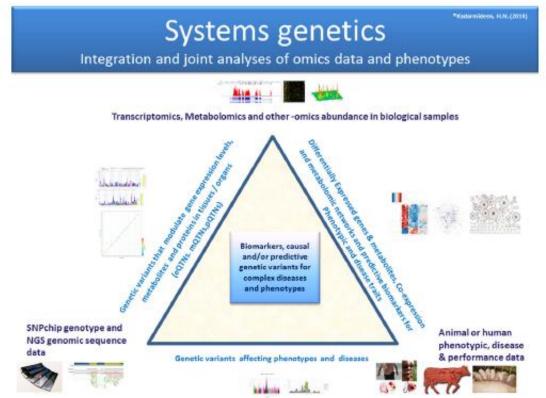
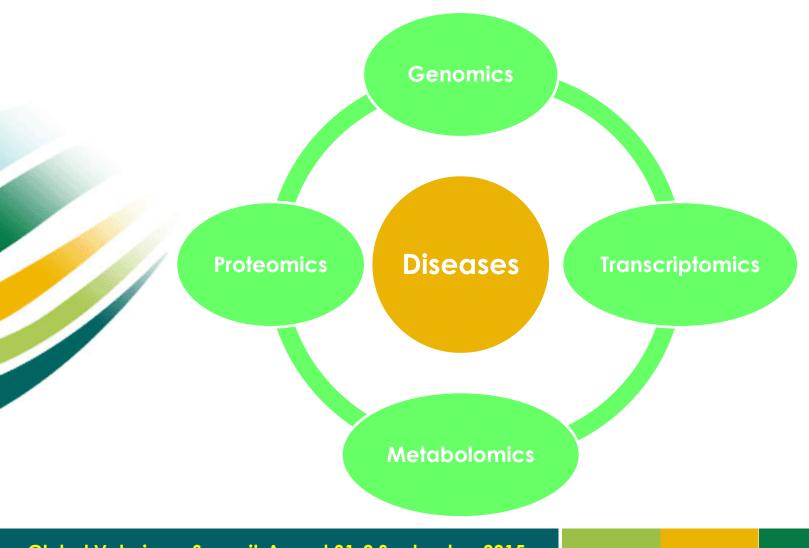
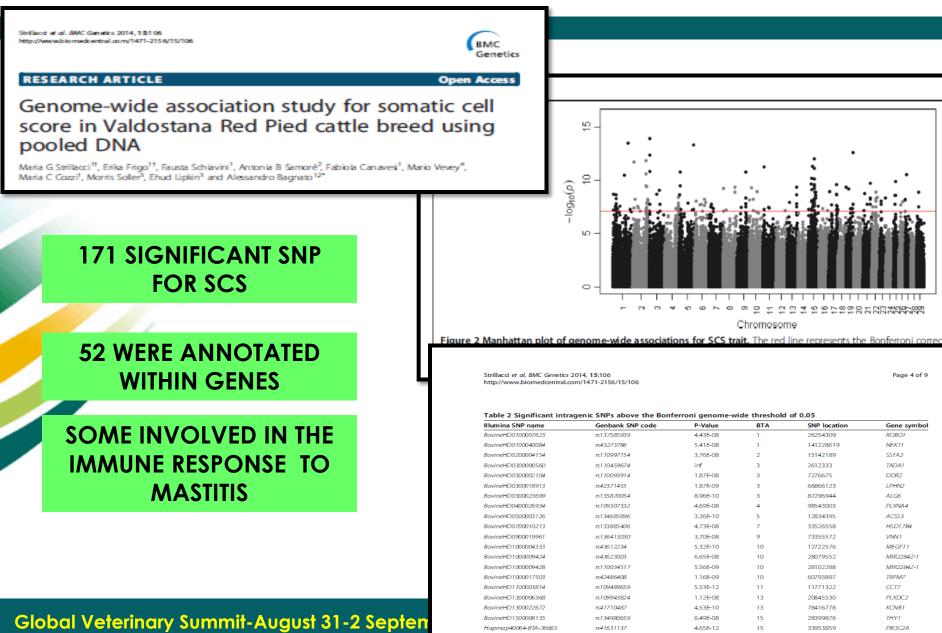



Fig. 5. Illustration of integrative systems genetics approaches that integrate genomic data and other -omics data types with diseases and phenotypic traits to detect highly predictive biomarkers, causal variants and master regulatory genes and variants in complex traits and diseases. Modified from (Kadarmideen, 2008).

Application of OMICs tech for analyzing diseases in livestock species

Diseases in cattle

Kind	Name
Viral	Bovine viral diarrhoea (BVD) Infectious bovine rhinotracheitis (IBR) Bovine viral syncytial virus (BRSV)
Bacterial	Mastitis Lameness Johne's disease Salmonellosis
Metabolic	Ketosis Milk fever (hypocalcemia) Grass tetany (hypomagnesaemia) Displaced abomasum
Fertility related condition	Retained foetal membranes (RFM) Cystic ovaries Metritis


GWAS for health

Trait	Single-SNP analysis			Multiple-SNP analysis	
	Original p-values	Bonferroni correction	False discovery rate (FDR)	Elastic net	
	(<i>p</i> -value ≤ 0.05)*	(p-value≤1.22 x 10 ⁰⁶)*	(q-value≤0.05)*	(α = 0.05)	
Longevity	5467	4	270	143	
Fertility	6304	19	726	183	
Cystic Ovaries	2149		-		

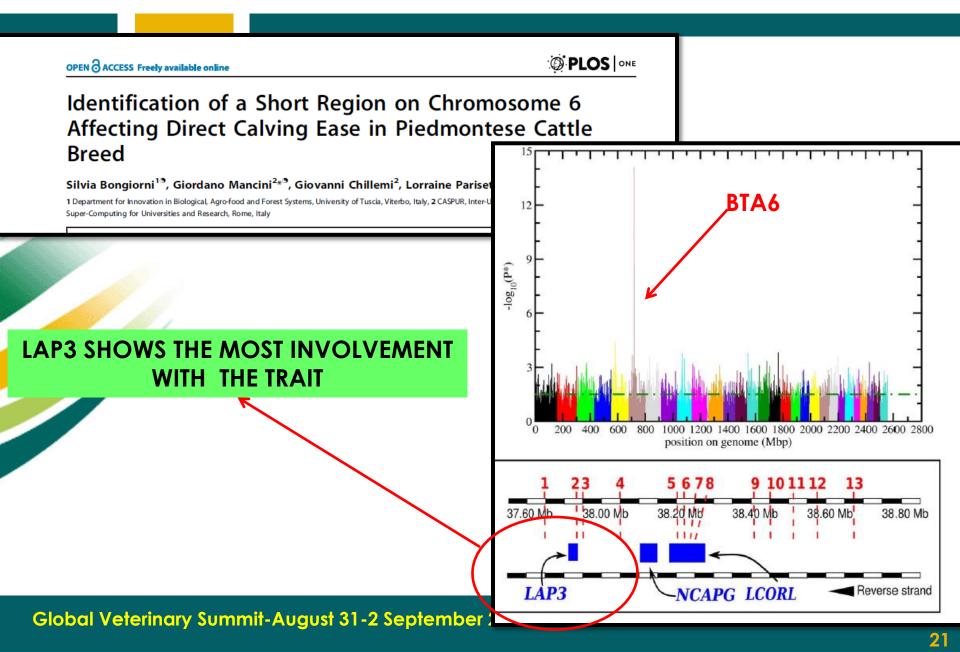
* Threshold of significant associations

GWAS for mastitis

GWAS for John's disease in sheep

Moioli, B., S. D'Andrea, L. De Grossi, E. Sezzi, B. De Sanctis, et al., 2015 Genomic scan for identifying candidate genes for Paratuberculosis resistance in sheep. Anim. Prod. Sci. in press.

PARATUBERCOLOSIS ELISA TEST



NEGATIVE VS POSITIVE

30 PUTATIVE CANDITATE GENE FOR DISEASE SUSCEPTIBILITY

GWAS for calving ease in cattle

TRANSCRIPOTIMCS for paratubercolosis in cattle

Available online at www.sciencedirect.com

Veterinary Immunology and Immunopathology 113 (2006) 73-89

Veterinary immunology and immunopathology

www.elsevier.com/locate/vetimm

MICROARRAY

Gene expression profiling of peripheral blood mononuclear

cells (PBMC) from *Mycobacterium bovis* i after *in vitro* antigenic stimulation with pu derivative of tuberculin (PPD)

Kieran G. Meade^a, Eamonn Gormley^b, Stephen D.E. Park Guilherme J.M. Rosa^c, Eamon Costello^d, Josepl Paul M. Coussens^c, David E. MacHugh

OPEN OACCESS Freely available online

Global Gene Expression and Systems Bovine Monocyte-Derived Macropha In Vitro Challenge with Mycobacterium bovis

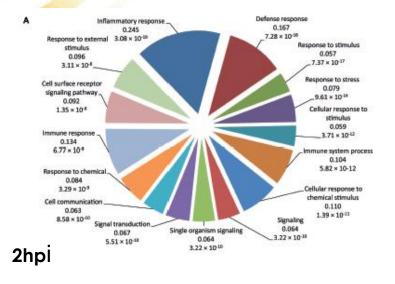
David A. Magee^{1,9}, Maria Taraktsoglou^{1,9}, Kate E. Killick¹, Nicolas C. Nalpas¹, John A. Browne¹, Stephen D. E. Park¹, Kevin M. Conlon², David J. Lynn³, Karsten Hokamp⁴, Stephen V. Gordon^{1,5}, Eamonn Gormley⁶, David E. MacHugh^{1,5}*

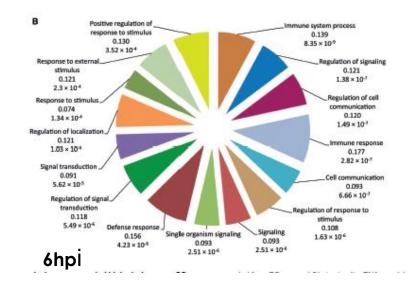
Killick et al. BMC Genomics 2011, 12:611 http://www.biomedcentral.com/1471-2164/12/611

Open Access

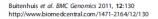
RESEARCH ARTICLE

Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with *Mycobacterium bovis* reveals suppression of host immune genes


Kate E Killick¹, John A Browne¹, Stephen DE Park¹, David A Magee¹, Irene Martin¹, Kieran G Meade², Stephen V Gordon^{1,3}, Eamonn Gormley⁴, Cliona O'Farrelly⁵, Karsten Hokamp⁶ and David E MacHugh^{1,3*}


TRANSCRIPOTIMCS for paratubercolosis in cattle

Nalpas et al. BMC Genomics 2013, 14:230 http://www.biomedcentral.com/1471-2164/14/230	BMC Genomics	RNAseq	
RESEARCH ARTICLE	Open Access		
Whole-transcriptome, high-throughput RN sequence analysis of the bovine macropha response to Mycobacterium bovis infection Nicolas C Nalpas ¹ , Stephen DE Park ¹ , David A Magee ¹ , Maria Taraktsoglou ¹ , John A Browne ¹ , Kevi Kévin Rue-Albrecht ¹ , Kate E Killick ¹ , Karsten Hokamp ³ , Amanda J Lohan ⁴ , Brendan J Loftus ⁴ , Earne Step	response to I paratubercul Maura E. Casey ¹² , Klerc Kate E. Klilick ¹⁴ , Stephi David E. MacHugh ¹² *	ne bovine monocyte-derive Mycobacterium avium subs osis infection using RNA-se an G. Meade ² , Nicolas C. Nalpas ¹ , Maria Taraktso en D. E. Park ¹⁴ , Eamonn Gormley ³ , Karsten Hoka ² School of Agriaukarwand Food Science, University College Duble, Dubl beautrant Asimal and Goraeland Humanh and Booseten Center, Line	Species eq bglou ² , John A. Browne ¹ , amp ⁴ , David A. Magee ¹⁺ and
RESEARCH ARTICLE The Identification of Bovine Serum and Th Biomarkers of Early A subsp paratuberculos Damien Farrell ¹ ^e , Ronan G. Shaughness Bryan Markey ¹ , Stephen V. Gordon ^{1,3,4,5,4}	neir Poten <i>Mycobacte</i> sis Infectio	tial as Novel erium avium on	


TRANSCRIPOTIMCS for paratubercolosis in cattle

	MICROARRAY	RNASEQ	
	N° DE		
2 hpi	315	245	
6hpi	466	574	
TOTALE	781	819	

TRANSCRIPOTIMCS for mastitis

BMC

RESEARCH ARTICLE

Open Access

In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine *Escherichia coli*-mastitis

Bart Buitenhuis^{1*}, Christine M Røntved², Stefan M Edwards¹, Klaus L Ingvartsen², Peter Sørensen²

Brand et al. Genetics Selection Evolution 2011, 43:24 http://www.gsejournal.org/content/43/1/24 GSE Genetics Selection Evolution

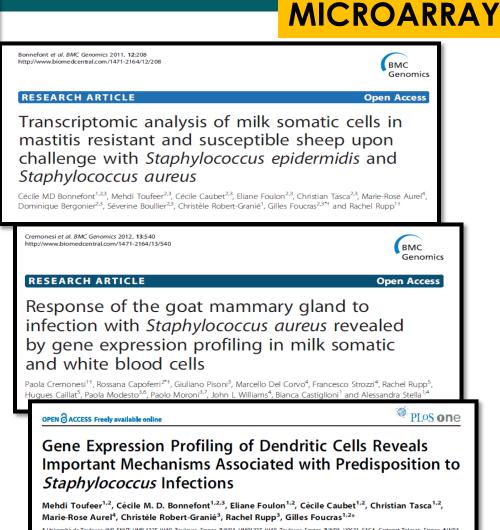
RESEARCH

Open Access

Comparative expression profiling of *E. coli* and *S. aureus* inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score

Bodo Brand¹, Anja Hartmann¹, Dirk Repsilber², Bettina Griesbeck-Zilch⁴, Olga Wellnitz⁵, Christa Kühn³, Siriluck Ponsuksili¹, Heinrich HD Meyer⁴ and Manfred Schwerin^{1,6*}

Lewandowska-Sabat et al. BMC Genomics 2013, 14:891 http://www.biomedcentral.com/1471-2164/14/891


RESEARCH ARTICLE

Open Access

BMC Genomics

The early phase transcriptome of bovine monocyte-derived macrophages infected with *Staphylococcus aureus in vitro*

Anna Monika Lewandowska-Sabat^{1†}, Guro Margrethe Boman^{1†}, Alison Downing², Richard Talbot², Anne Kristine Storset³ and Ingrid Olsaker^{1*}

TRANSCRIPOTIMCS for mastitis

Jin et al. BMC Genomics 2014, 15:181 http://www.biomedcentral.com/1471-2164/15/181	RNAseq
RESEARCH ARTICLE Open Access	
Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with <i>Escherichia coli</i> or <i>Staphylococcus aureus</i> bacteria reveals pathogen directed microRNA expression profiles	MicroRNA Regulation of Bovine Monocyte Inflammatory and Metabolic Networks in an In Vivo Infection Model Nathan Lawless,*' Timothy A. Reinhardt,* Kenneth Bryan,* Mike Baker, [§] Bruce Pesch, [§] Duane Zimmerman,* Kurt Zuelke,** Tad Sonstegard,'' Cliona O'Farrelly,' John D. Lippolis, ^{1,1}
Maxwell Scientific Organization, 2013	
Submitted: December 31, 2012 Accepted: February 08, 2013 Publishe	j: Angust 20, 2013
Sequence, Expression and Phylogenetic Analysis of Immune Response Gen Mastitis in Buffaloes	Genomics
² Priyanka Banerjee, ² Suresh K Gahlawat ^{1, 2} Jyoti Joshi, ¹ Upasna Sharma and ¹ R ¹ National Bureau of Animal Genetic Resources, Karnal, Haryana, India ² Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Hary	I ranscriptomic and genomic evidence for

TRANSCRIPOTIMCS for mastitis

Chemokine signaling pathway	Mammary gland tissue	Escherichia coli	Buitenhuis et al. [81]
Toll-like receptor signaling pathway			
Leukocyte transendothelial migration			
Cytokine-cytokine receptor interaction			
Natural killer cell mediated cytotoxicity			
Cell adhesion molecules (CAMs)			
RIG-I-like receptor signaling pathway			
Fc gamma R-mediated phagocytosis			
B cell receptor signaling pathway			
Antigen processing and presentation			
Adipocytokine signaling pathway			
Apoptosis			
Complement and coagulation cascades			
Proteasome			
Jak-STAT signaling pathway			
Primary immunodeficiency			
Glycerophospholipid metabolism			
Pathways in cancer			
Retinol metabolism			
Fatty acid metabolism			
Fatty acid biosynthesis			
Metabolism of xenobiotics by cytochrome P450			
Glycerolipid metabolism			
Drug metabolism — cytochrome P450			

PROTEOMICS

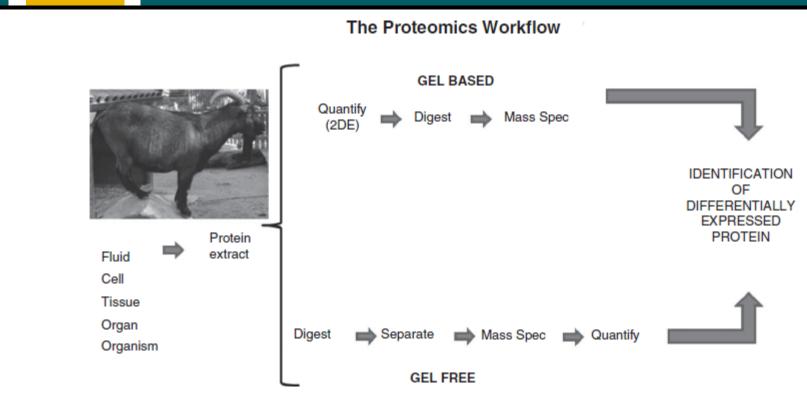
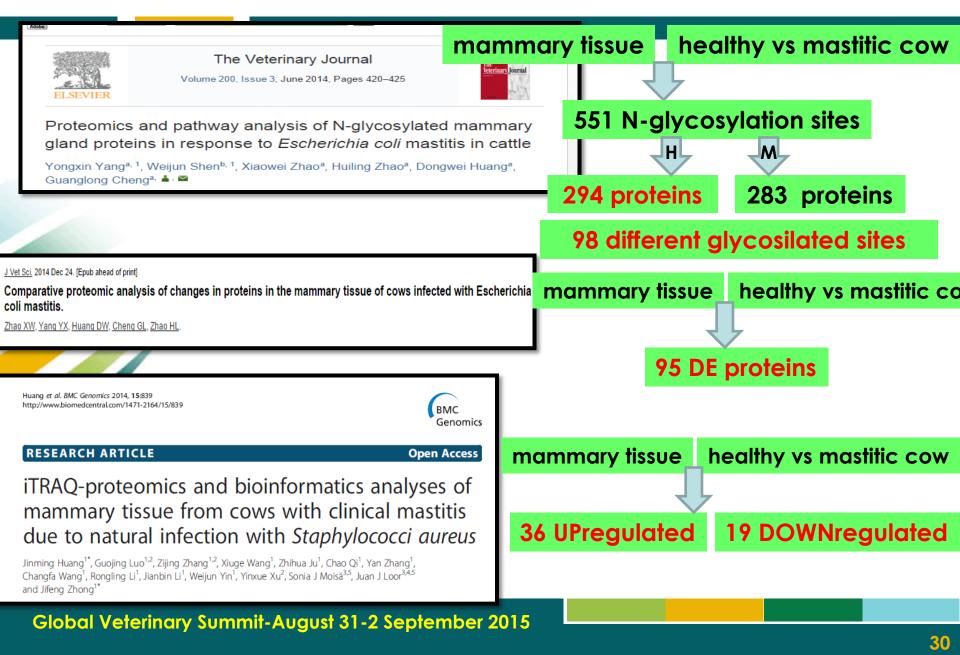
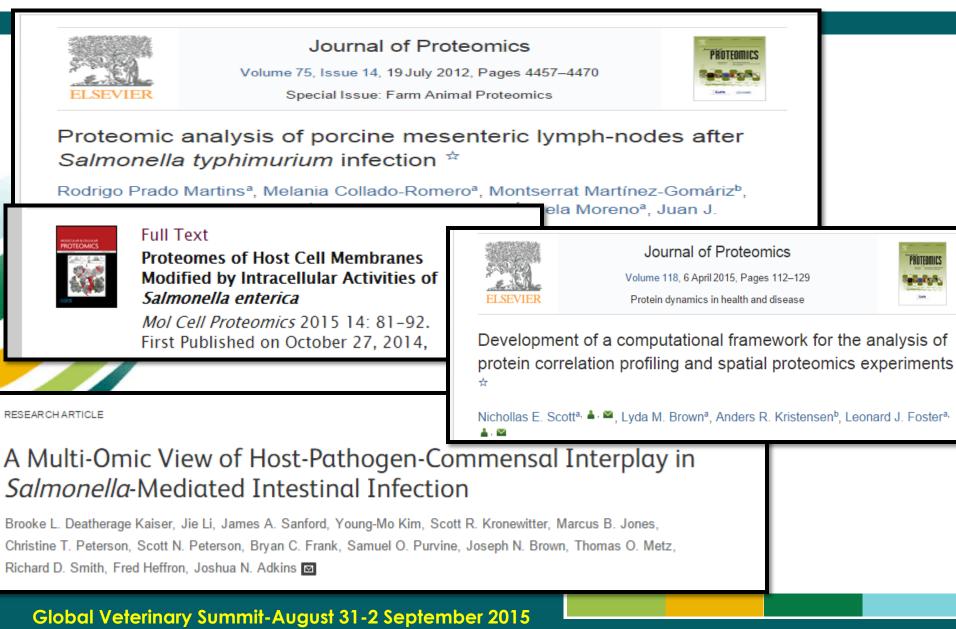



Figure 1 A schematic representation of the proteomics workflow. In proteomics, one of the two approaches are followed: gel based first, individual protein expression is quantified using two-dimensional electrophoresis and individual proteins are digested with ar trypsin, and identified using MS. In the gel-free approach, the whole protein extracts are digested with trypsin, separated using ch proteins of interest identified and quantified using high-throughput MS instruments. The latter approach is particularly suitable for spec coverage levels in databases (cattle, pig, sheep, chicken and salmon).


PROTEOMICS

PROTEOMICS and mastitis

PROTEOMICS and Salmonella in pig

CONCLUSIONS

