Oxidative Inhibition of Erythrocyte Na⁺-K⁺ Pump: A Functionally Relevant Circulating Marker of Oxidative Stress

Dr. Chia-chi Liu Molecular Cardiac Research Unit

Sydney Medical School University of Sydney Australia

Outline

- Cardiovascular disease (CVD)
- CVD and Na pump
- Background of Na pump
- Oxidative regulation of the pump
- Measurement of oxidative damage of Na pump- a potential biomarker

Cardiovascular disease (CVD)

- the number 1 cause of death globally
- accounting for 17.3 million deaths per year
- a number that is expected to grow to >23.6 million by 2030

http://www.who.int/cardiovascular_diseases/en/

Overview

 Reactive oxygen species: key feature of cardiovascular disease

scular

Myung et al. BMJ 2013;346:f10

Raised levels of cardiac myocyte Na⁺

DM Bers. Cardiac E-C Coupling. 2001

- Plasma membrane ion transporter
- Transports 3Na⁺ out- and 2K⁺ into cells
- Uses ~20% of all energy (ATP) in body
- Crucial for normal function and survival of all cells, especially for cardiac myocytes

3D structure of the Na⁺-K⁺ pump

Nature 459:446-50, 2009

Na⁺-K⁺ pump Regulation

- Kinases mediate Na⁺-K⁺ pump regulation
 - however, kinases have poor access to phosphorylation sites on the pump molecule

-Bibert S & Geering K. J Biol Chem 2008 -Sweadner & Feschenko. Am J Physiol Cell Physiol 2001 -Cornelius, et al. J Bioenerg Biomembr 2001

 Chemical oxidants decrease Na⁺-K⁺ pump activity

-Ellis DZ, Rabe J, Sweadner KJ. J Neurosci 2003 -White CN et al. Am J Physiol Cell Physiol 2008

Oxidative protein modifications

Protein Glutathionylation

• Protein glutathionylation -

- adduct with –ve charge
- is stable but reversible

Liu, C.C. Circ Res 105, 693-700; 2009

IB: β1

IB: GSH

Glutathionylation of Na⁺-K⁺ pump

Liu, C.C. Circ Res 105, 693-700; 2009

Mutation of Cys45 in β_1 subunit

Liu, C.C. Circ Res 105, 693-700; 2009

Only Cys 45 in β_1 subunit

Would knowing the degree of oxidative inhibition of the Na⁺-K⁺ pump in erythrocytes help to monitor the heart disease progress? β 1 subunit is detectable in erythrocytes, and is glutathionylated

Natasha Fry PhD in progress; Unpublished, 2014

Enzyme Linked Immunosorbent Assay - to quantify $e\beta 1-GSS$

A. Method

 $e\beta$ 1-GSS in HF vs sham rabbits

How does $e\beta 1$ -GSS relate to what's happening in the heart?

Correlation of $e\beta$ 1-GSS with β 1 subunit glutathionylation in cardiac myocytes

r=0.851; p<0.001

Liu, Unpublished, 2014

How does $e\beta$ 1-GSS relate to what's happening in the heart?

Natasha Fry PhD in progress; Unpublished, 2014

What about in humans?

Detection of $e\beta$ 1-GSS in humans

What about in humans?..... $e\beta$ 1-GSS

3167 ± 164 U vs 1018 ± 20 U; n=16; p<0.001 Independent of age, gender, bmi. What about in humans?.....Na⁺-K⁺-ATPase activity

Na-K ATPase activity in erythrocytes from HF

What about in humans? BNP

Diabetes and eb1-GSS in animal models

erythtocytes.

Diabetes and animal models

C. Western blot -Slow -Small sample sizes D. ELISA
-Rapid
-Screen Large sample size in one go

S-glutathionylation of erythrocyte β₁ subunits detected by CO-IP. S-glutathionylation was significantly increased in DM erythrocytes.

detected by ELISA. S-glutathionylation was significantly increased in DM erythrocytes.

Diabetes and eb1-GSS in humans

subunits detected in human.

 $\begin{array}{l} S\mbox{-glutathionylation} \mbox{ of erythrocyte } \beta_1 \mbox{ subunits} \\ \mbox{ detected by ELISA. } S\mbox{-glutathionylation of} \\ \mbox{ erythrocytes was significantly increased in DM} \\ \mbox{ patients compared to Normal .)} \end{array}$

Summary: $e\beta 1$ -GSS

- occurs and is detectable!
- ELISA assay is rapid and quantitative
- parallels oxidative inhibition of cardiac Na⁺-K⁺ pump
- increases in patients with HF and reflects severity
- increases in diabetics

Potential prognostic value of $e\beta$ 1-GSS?

- For HF: important if being used as diagnostic tool, but less so if combined with clinical and laboratory biomarkers for prognostic purposes
- Ongoing work:
 - Prognostic significance of $e\beta$ 1-GSS over conventional biomarkers and risk factors:
 - in hospitalized HF/DM
 - in community subjects at high risk of HF (SCREEN-HF ~ 4000 subjects)

Special Thanks

North Shore Heart Research Group -Prof Helge Rasmussen -Prof Gemma Figtree -Dr Elisha Hamilton <i>Molecular Cardiac Research Unit</i> -Miss Chris Mozar PHD students	International -Prof Kaethi Geering (Switzerland) -Dr Stephanie Bibert (Switzerland) -A/Prof Francesca Marassi USA) -A/Prof Kathy Sweadner (USA) -A/Prof Flemming Cornelius (Demark) -Dr Henning Bundgaard (Denmark) -Astellas Pharma company (Japan)
-Miss. Natasha Fry	Australia
-Dr. Keyvan Karimi Galougahi	-Prof Robert Baxter
-Mr. Alvaro Garcia	-A/Prof Jan Gebicki
Honours student	-A/Prof Ronald J. Clarke
-Mr. William Hannam	-A/Prof Richard Payne

Funded by :

National Heart Foundation Australia

Heart Research Australia