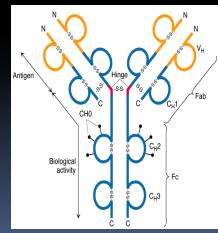
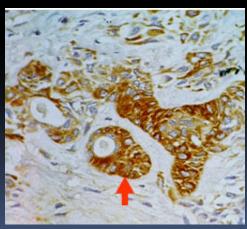
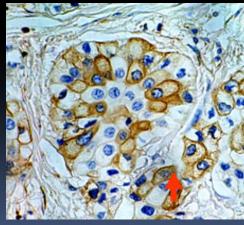

Making Cancer History®

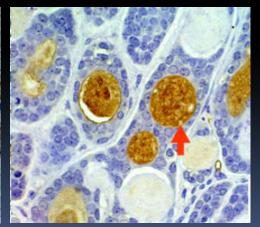
Role of Immunoglobulin Gene Expression in Acute Myeloid Leukemia


C. Cameron Yin, MD, PhD
Department of Hematopathology
University of Texas MD Anderson
Cancer Center

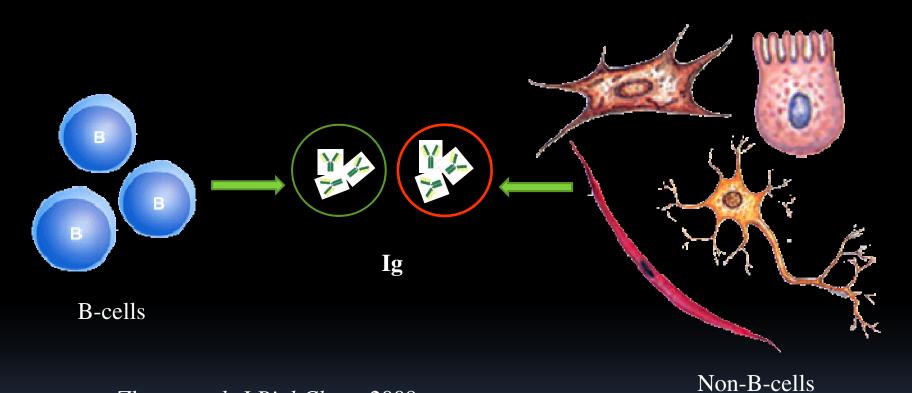
Immunoglobulin (Ig) has been presumed to be produced only by B-cells and plasma cells


Plasma cells

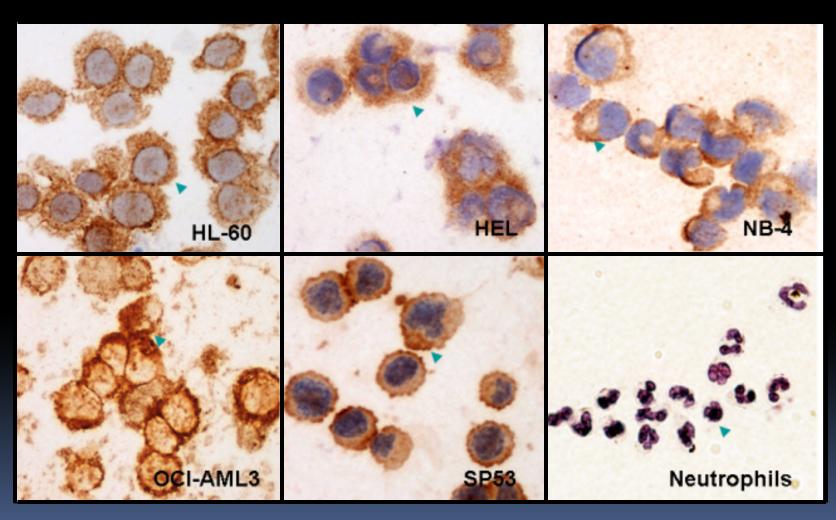

- Consists of 2 heavy chains and 2 light chains
- Function as antibodies to identify and neutralize pathogens
- Ig diversity generated by several mechanisms
- Only produced by B-cells and plasma cells
- Ig gene rearrangement used for the diagnosis of B-cell lymphomas



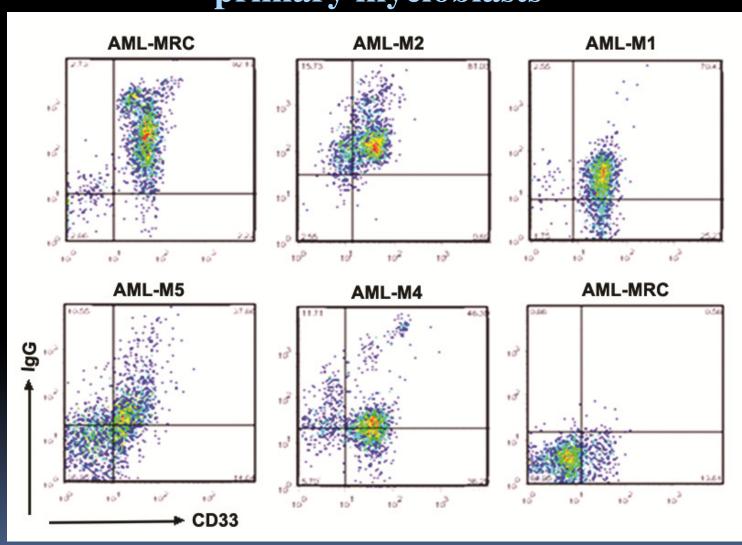
Discovery of non-B-cell-derived Ig


- 1989, IgG-like immunostaining was found incidentally in breast cancer cells (Qiu *et al.*)
- 1996, first report of IgG-like molecule in epithelial cancer cells (Qiu et al. Chinese J Immunol. 1996)
- 2003, first report of IgG-like molecule with growth factor-like activity (Qiu *et al. Cancer Res.* 2003)

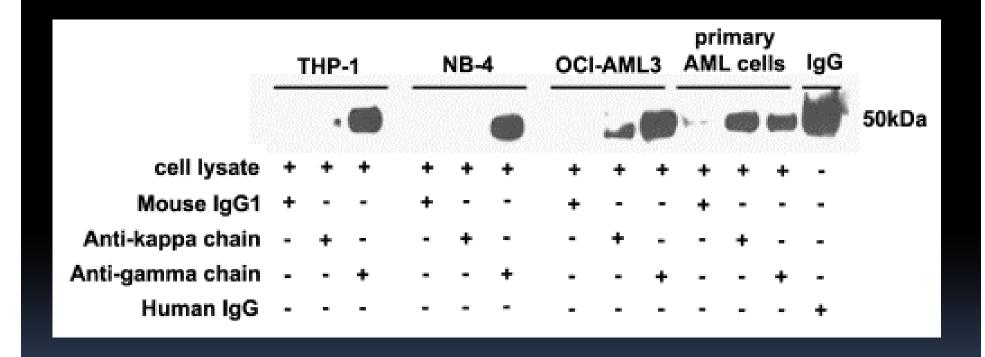
Non B-lineage cells could also produce Ig

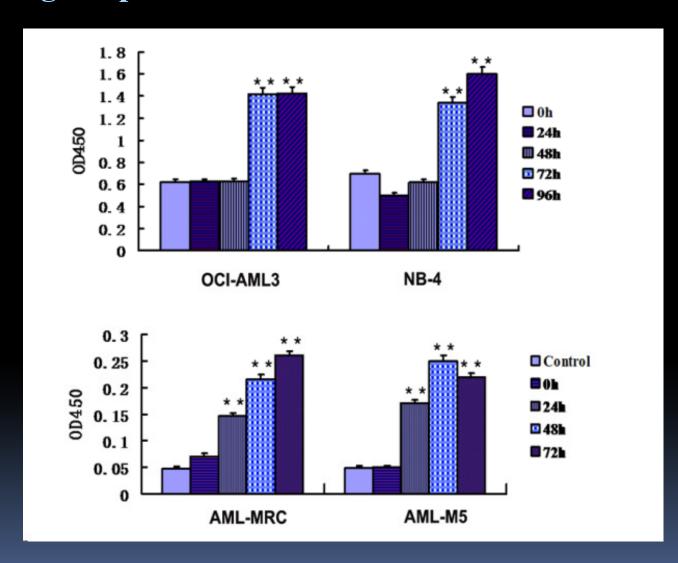


Zheng et al. J Biol Chem. 2009 Zhang et al. Cell Mol Life Sci. 2010 Zhu et al. Cell Mol Immunol. 2010 Hu et al. Plos One. 2012

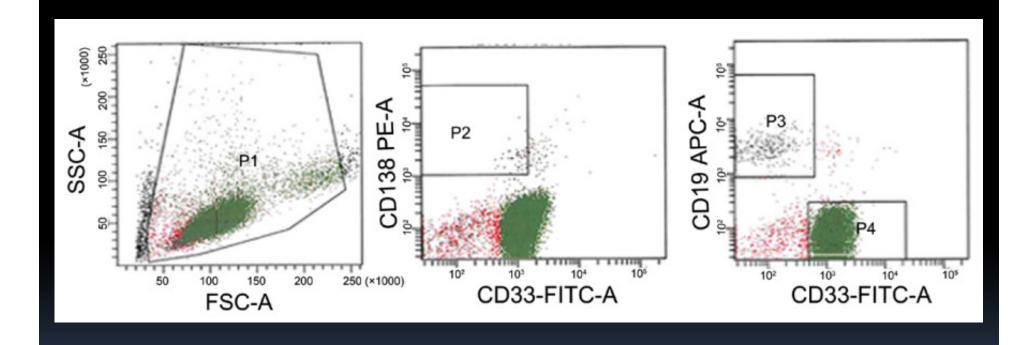

Key questions on non-B-cell-derived Ig

- Is it expressed in AML cells?
- Is it transcribed by AML cells or due to non-specific binding of B-cell-Ig? How about normal myeloid cells?
- What is the mechanism of rearrangement? Does it have diversity?
- What is the biological function and significance?
- What is its clinical implication?

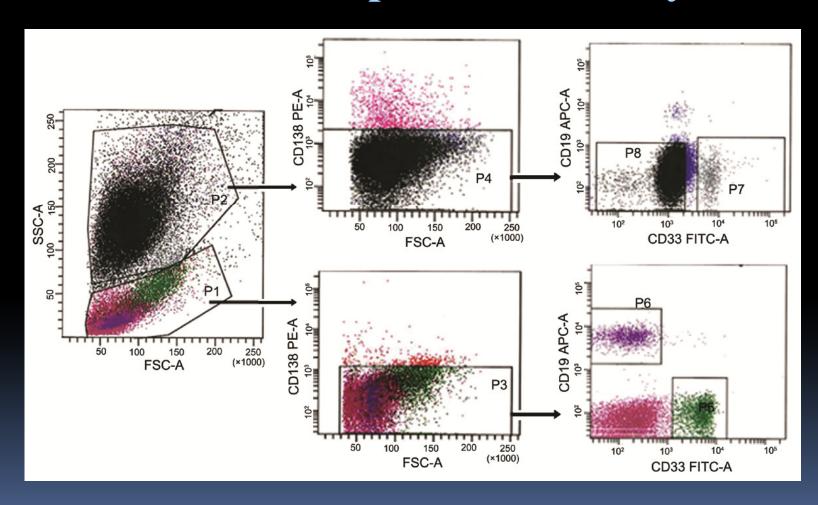

IgG is expressed at a high frequency and level in AML cell lines


IgG is expressed at a high frequency and level in primary myeloblasts

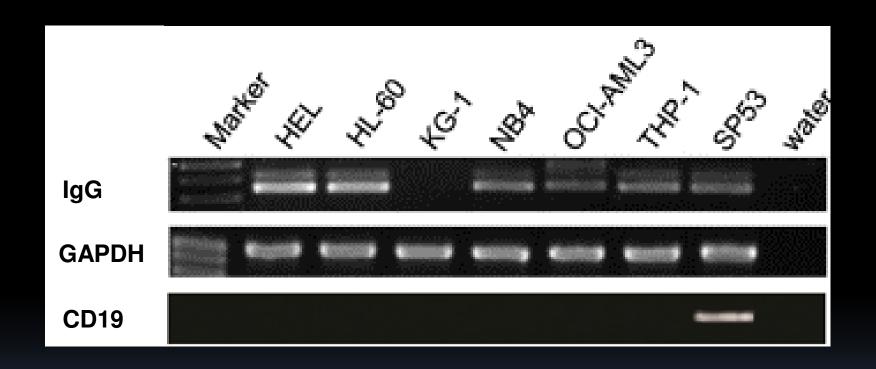
AML-IgG has the same molecular weight as B-cell-IgG


AML-IgG is present both as membrane and secreted forms

Key questions on non-B-cell-derived Ig


- Is it expressed in AML cells?
- Is it transcribed by AML cells or due to non-specific binding of B-cell-Ig? How about normal myeloid cells?
- What is the mechanism of rearrangement? Does it have diversity?
- What is the biological function and significance?
- What is its clinical implication?

Flow cytometry cell sorting of CD33+CD19-CD138-myeloblasts



Qiu et al. Leukemia 2013

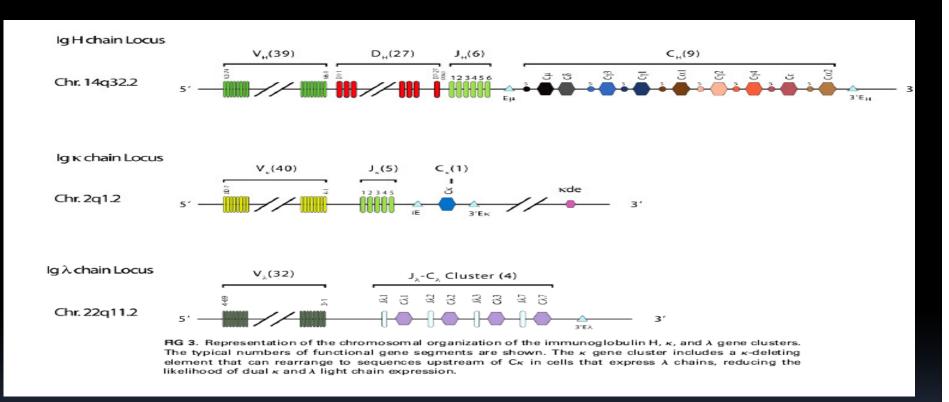
Flow cytometry cell sorting of CD33+CD19-CD138- neutrophils and monocytes

IgG V_HDJ_H transcript is detected in AML cell lines

IgG is indeed produced by AML cells

Qiu et al. Leukemia 2013

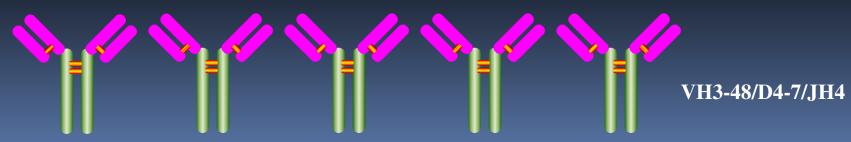
$IgG\ V_HDJ_H$ transcript is detected in primary myeloblasts but not in non-neoplastic monocytes and neutrophils

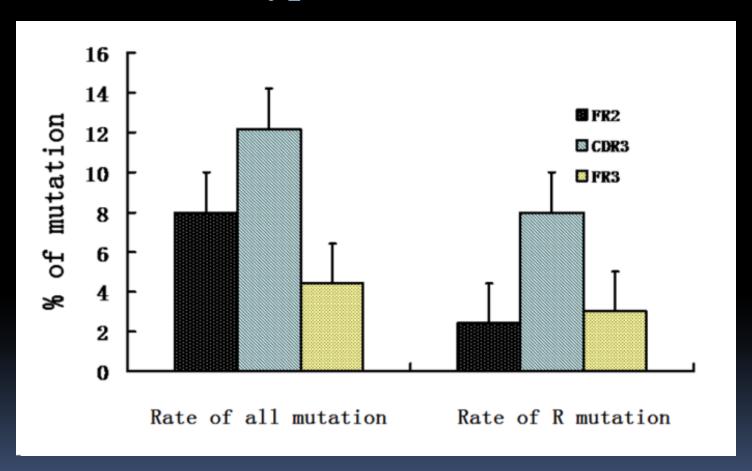

- a. CD33+CD19-CD138- myeloblasts from AML patients
- b. CD19+ B-cells for the patients with non-hematopoietic neoplasms
- c. Monocytes and neutrophils from patients with non-hematopoietic neoplasms

Qiu et al. Leukemia 2013

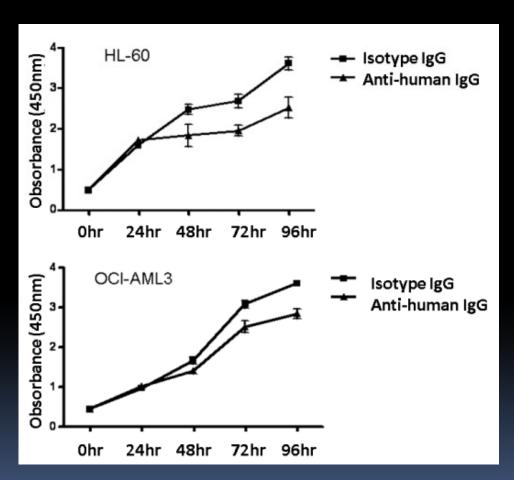
Key questions on non-B-cell-derived Ig

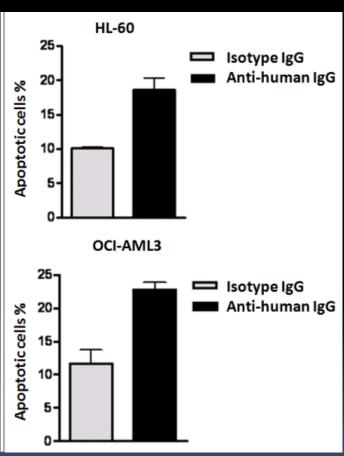
- Is it expressed in AML cells?
- Is it transcribed by AML cells or due to non-specific binding of B-cell-Ig? How about normal myeloid cells?
- What is the mechanism of rearrangement? Does it have diversity?
- What is the biological function and significance?
- What is its clinical implication?


Classical B-cell-Ig shows high diversity

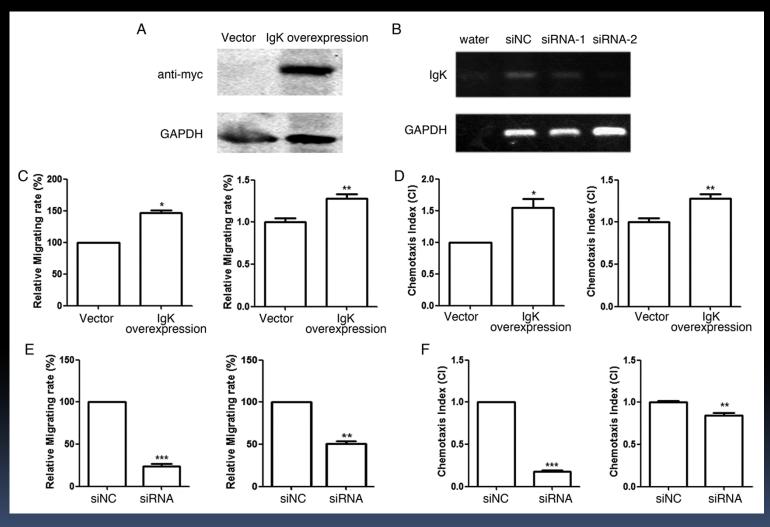


CDR2 WVRQAPGKELEWV \$AI\$G\$GG\$TYYAD\$VKGRFTBRDN\$KNTLYVQMN\$LRAEDTAIYYCAKEQGTAPFDPWGOG HL-60-1 HL-60 2 WV ROAPGK ELEW VS AIS GSGGSTY YADS VK GRFTIS RDNSKNTLY VOMNSLRAE DTAIYY CAKEOGTAPFDPWGOG HL-60-3 WVRQAPGKELEWV \$ AISG \$ GG \$ TY YA D\$ VKG RFTIS RDN\$ KNTLY VQMN\$LRAE DTAIY YCAKEQG TA PFDPWGQG NB-4-1 WV RO APGK GLEWVS GIS GS G GS TYY ADSVK GRFTISRDNSKNTL YV OMNS LR AE DTA IYY CAK EOGT APFD PWG OG NB-4-2 WV RO APGK GLEWVS A IS GS G GS TYY ADSVK DRFTISRDNSKNTL YV OMNS LR AE DTA IYY CAK EOGT APFD PWG OG NB-4-3 WV RQ APGK GLEWVS A IS GS G GS TYY AGS VK GR F TIS R DNS KNTL YV QMNS LR AE D TA IYY CAK EQG T APFD PWG QG HEL-1 WV ROAPGK GLEW VSSIS GSGGS TY Y ADS V KGRFTISRDNSKNTLY VOMNSLRAE DTAIYY CAKEOGTAPFDPWG OG HEL-2 WV ROPPGKGLEWV S AIS G SGG STY YADS V KG RFTISRDNSKNTLY VOMNSLRAE DTAIY YCAKE OG TAPFDPWGOG HEL-3 WV ROPPGKG LEWV S AIS G SGG STY YADS V KG RFTISRDNSKNTLY VOMNS LRAE DTAIY YCA KE OG TA PFDPWG OG THP-1-1 WV ROPPGKGLE WV SAISG SGG STY YADS VKG RFTIS RDNS KNTLY VOMNSLRAE DTAIY YCAKE OG TAPFDP WGOG THP-1-2 WV ROV PGK GLEWVS SISG SGG STY YADS V KS RFTI SRDNS KNTL YLOMN SLRAE DTAI Y YCAKE OG TA PFDPW GOG THP-1-3 WV ROAP GKG LE WV S AIS G S G G S TY Y A D S V KG R F TIS R D N S K N TL Y LOMN S L R AE DT AI Y Y C A KEOG TA P F D P W G O G WVRQPPGKGLEWVSYISDSGGS I YYAASVKGRFTISRDNAKNSLYLQMNSLTAEDTAVYYCAKEQGTAPFDPWGQG


AML-IgG usually undergoes somatic hypermutation

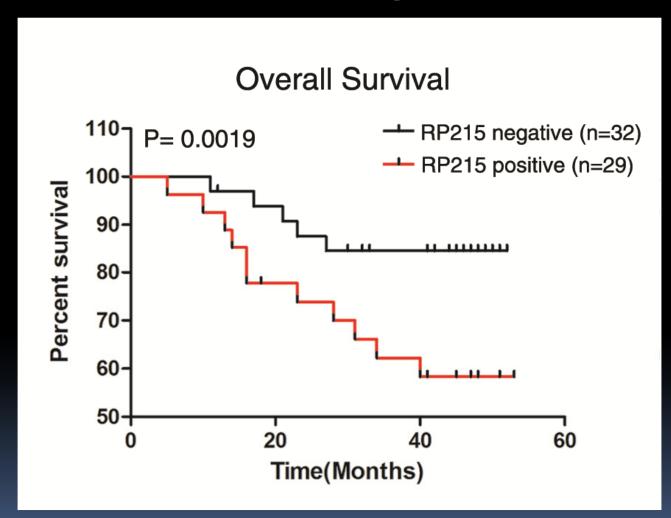


Key questions on non-B-cell-derived Ig


- Is it expressed in AML cells?
- Is it transcribed by AML cells or due to non-specific binding of B-cell-Ig? How about normal myeloid cells?
- What is the mechanism of rearrangement? Does it have diversity?
- What is the biological function and significance?
- What is its clinical implication?

Anti-human IgG reduces cell viability and induces apoptosis in AML cell lines

IgK expression promotes cell migration and chemotaxis in AML cell lines



Wang et al. Oncotarget (in press) Huang et al. Cellular & Molecular Immunol 2014

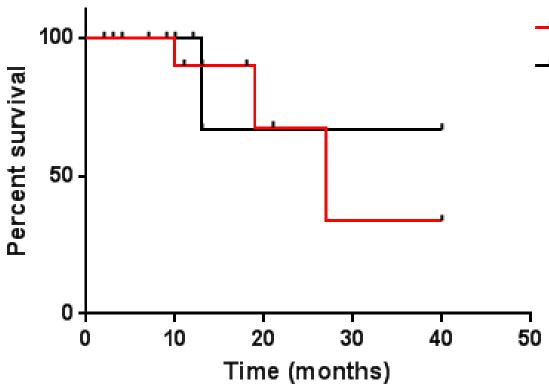
Key questions on non-B-cell-derived Ig

- Is it expressed in AML cells?
- Is it transcribed by AML cells or due to non-specific binding of B-cell-Ig? How about normal myeloid cells?
- What is the mechanism of rearrangement? Does it have diversity?
- What is the biological function and significance?
- What is its clinical implication?

High level of IgG expression is correlated with overall survival of lung adenocarcinoma

Clinical and laboratory findings

	IgG+ (n=18)	IgG- (n=7)	p value
Age	65 (26-87)	56 (25-79)	0.4544
Gender	8M/10F	6M/1F	0.0900
WBC	82.6 (1.1-620.4)	26.4 (0.1-152.8)	0.3654
Hgb	9.0 (4.6-11.8)	10.8 (8/62)	0.0706
Platelet	71 (10-374)	26 (8-62)	0.0950
PB blast	64 (8-96)	72 (0-91)	0.9514
PB monocytes	1.35 (0-48.88)	0.09 (0-1.52)	0.1093
LDH	1405 (199-10571)	570 (427-1782)	0.1702


Bone marrow findings

	IgG+ (n=18)	IgG- (n=7)	p value
BM blast	60 (24-90)	80 (45-93)	0.1178
Dysplasia	10	3	0.6728
Classification			0.3654
M4/M5	8	3	1.0000
MRC	7	0	0.1326
M1	1	1	0.4900
t(8;21)	1	0	
M 0	0	1	
Unclassifiable	1	1	

28-gene NGS analysis

	IgG+ (n=18)	IgG- (n=7)	P value
FLT3	6/18	3/7	0.6729
DNMT3A	7/17	1/7	0.3521
PTPN11	6/17	0/7	0.1300
NPM1	5/17	3/7	0.6466
NRAS	5/17	0/7	0.2721
IDH1	5/17	0/7	0.2833
IDH2	3/17	3/7	0.3068
RUNX1	3/17	0/7	0.5296
TET2	3/17	2/7	0.6080
ASXL1	2/17	1/7	1.0000
JAK2	2/17	0/7	1.0000
WT1	2/17	1/7	1.0000
KIT	1/17	0/7	1.0000
TP53	0/17	1/7	0.2917
CEBPA	1/17	1/7	0.5072

Overall Survival

	IgG+ (n=18)	IgG- (n=7)
F/U (m)	11 (0-40)	12 (3-40)
CR	3	2
pAML	11	4
Died	4	1

Conclusions

- IgG gene is transcribed, expressed and secreted at a high frequency and level in AML cell lines and primary myeloblasts.
- AML-IgG V_HDJ_H rearrangements have undergone somatic hypermutation and display restricted or biased usage of V segments.
- Anti-human IgG reduces cell viability and induces apoptosis in AML cell lines.
- AML-IgG may be a novel AML-related gene that contributes to leukemogenesis and AML progression.
- AML-IgG may serve as a useful molecular marker for monitoring MRD or designing target therapy
- A large scaled study is needed to evaluate the prognostic implication of AML-IgG.

Acknowledgements

- Beijing Medical University
 - Xiaoyan Qiu
 - Miaoran Xia
 - Lina Wu
 - Chong Wang
 - Jing Huang
 - Fanlei Hu
- The Methodist Hospital
 - Youli Zu
- UT Medical School
 - Lei Chen

- MDACC
 - Xiaoping Sun
 - Xin Han
 - Zhiqiao He
 - Zhihong Hu
 - Pei Lin
 - James You
 - Carlos Bueso-Ramos
 - L. Jeffrey Medeiros
 - Elias Jabbour