

Relative Abundance of Tephritid Fruit Flies on Capsicum Ecosystem in North Eastern Hill Region of India

T. Boopathi, S.B. Singh,
T. Manju, S.K. Dutta,
AK.R. Singh and S.V. Ngachan

ICAR Research Complex for NEH Region (Indian Council of Agricultural Research)
Mizoram Centre, Kolasib – 796081, Mizoram

Introduction

Capsicum is a popular vegetable in Mizoram

Area of 29,140 ha. during 2012-2013

Production: 153350 MT during 2012-2013

Adapted to variable climatic conditions

Production and productivity limited by pests

Yield loss can approach 30-40%.

Objectives

1. Per cent infestation

2. Life cycle

3. Development of para-pheromone traps

4. Monitoring with para-pheromone traps

5. Development of prediction model

Material and Methods

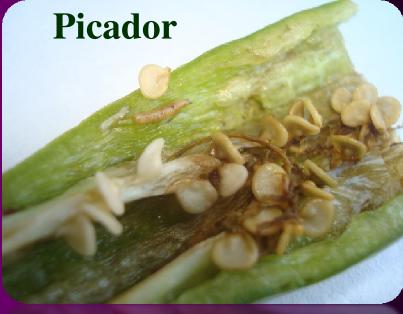
Cultivars: Indra and Picador

Spacing: 60×60 cm

Standard agronomy practices followed

No plant protection measures

1. Per cent infestation



Studied in both cultivars, Indra and Picador

% infestation: 200 fruits of both cultivars

Per cent Infestation

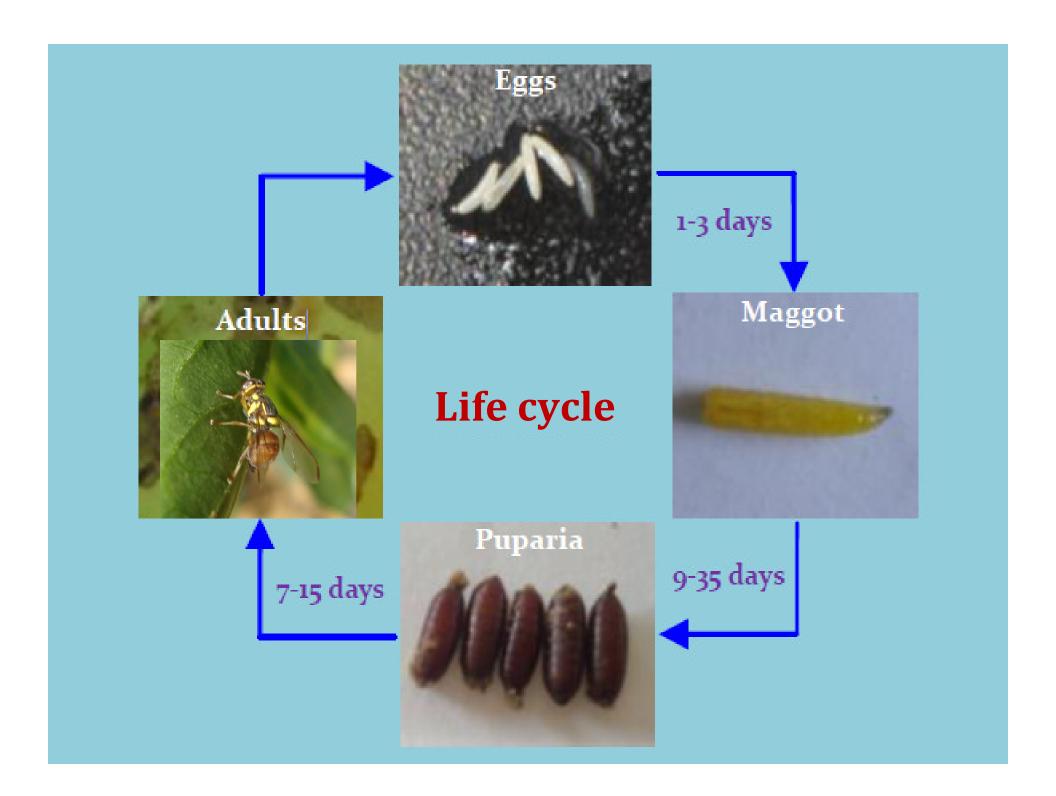
70 to 75 % 55 to 60

0/0

2. Life cycle

% adult emergence

Sex ratio (Male: Female)



% Pupal mortality

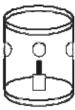
Abundance of Tephritid fruit flies in different cultivars of capsicum

Cultivars	Pupa	Emerged	Male	Female
Indra	103	52	30	20
Picador	67	30	14	16

Cultivars	% adult emergence	% pupal mortality	Sex ratio (M : F)
Indra	50.5	49.5	1:0.75
Picador	44.8	55.2	1:1.25

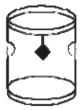
3. Development of para-pheromone traps

1. Trap designs:

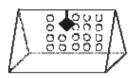

Cylindrical, spherical and triangular

2. Dispensers:

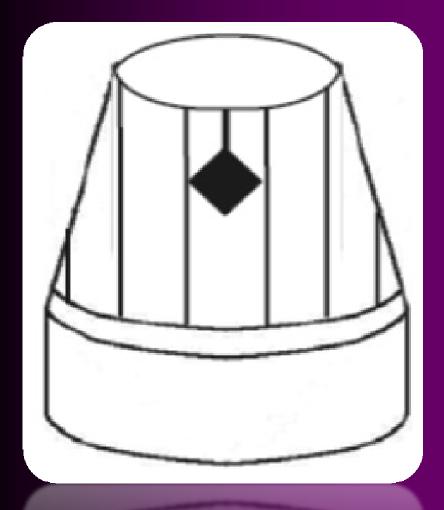
Wooden block, cotton wick & chalk piece


T₁ Cylindrical trap with side hole and cotton wick dispenser

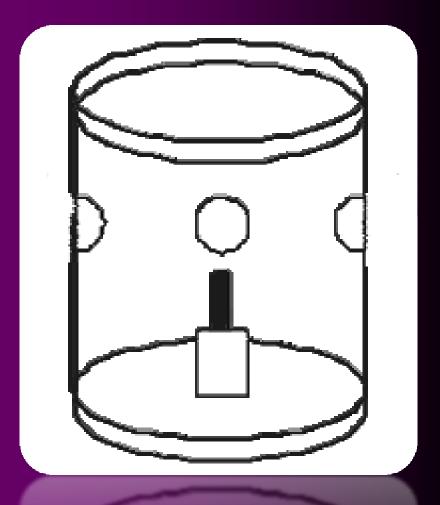
T₃ Cylindrical trap with bottom hole and wooden block dispenser


T₅. Spherical trap with bottom hole and rubber septum

T₂ Cylindrical trap with side hole and wooden block dispenser



T₄ Spherical trap with bottom hole and wooden block dispenser



T₆ Triangular trap with side hole and wooden block dispenser

Development of Para-pheromone Traps

Permanent type

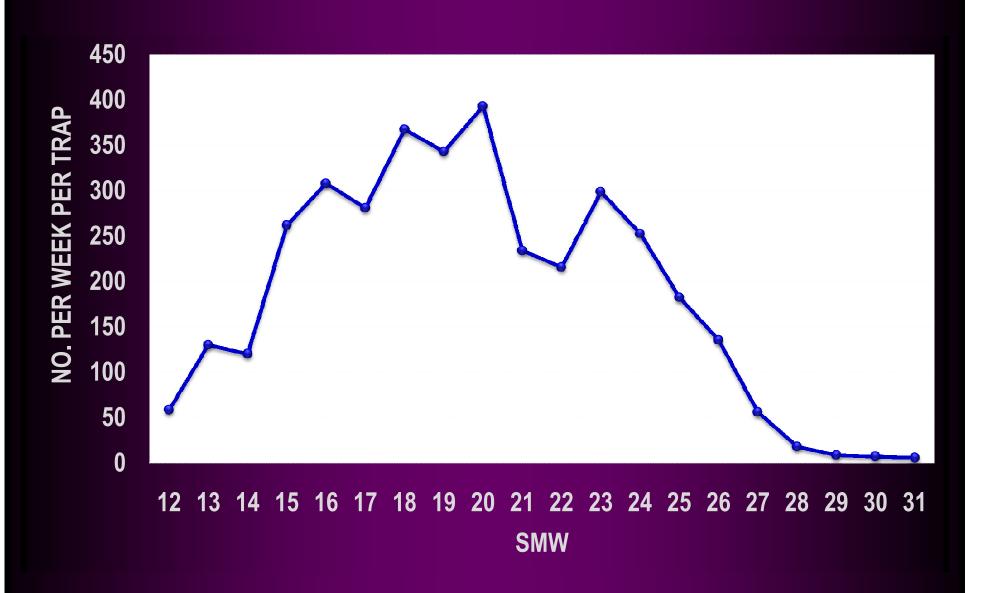
4. Monitoring and Mass Trapping with Parapheromone Traps

Three traps were maintained

Traps height: 1.5 m above ground level

Traps loaded with a cotton wick

16 ml of methyl eugenol and malathion (3:1)



Solution changed once in three months

Catches were recorded weekly for five months

Weekly tephritid fruit flies catches in capsicum ecosystem

5. Prediction model

Correlation analysis: Average weather data and fruit flies catches

weekly

Measured the present variability in fruit flies catches

A step-wise regression procedure applied to select the most crucial weather factors

Goodness-of-fit, co-efficient of determination (R²) helps in development of models

Relationships Between Weekly Weather Parameters and Fruit Flies Catches

Meteorological parameters	Correlation coefficient (r)	
Minimum temperature (°C)	-0.398ns	
Maximum temperature (°C)	0.457*	
Minimum relative humidity (%)	-0.257ns	
Maximum relative humidity (%)	0.074ns	
Rainfall (mm)	-0.290ns	
Rainy days	-0.173ns	

Results of statistical models along with goodness of fit statistics

Model types	Multiple regression
Full regression model (All weather parameters)	T-value : -1.81ns (X_1), 3.14** (X_2), -0.00ns (X_3), 0.76ns (X_4), -1.73ns (X_5), 0.21ns (X_6) F value : 3.08* R ² : 0.59* Regression equation : Y= -1088.03 - 41 (X_1) + 69 (X_2) - 0.01 (X_3) + 2 (X_4) - 1.5 (X_5) +
Optimized model (using minimum and maximum temperature only)	T-value: -3.43** (X ₁) and 3.13** (X ₂)

ns,*,** non-significant or significant at P<0.05 or P<0.01

Y = Mean number of fruit flies, X_1 = minimum temperature (0 C), X_2 = maximum temperature (0 C), X_3 = morning relative humidity (0), X_4 = evening relative humidity (0), X_5 = rainfall (mm), X_6 = rainy days

Summary

New records of fruit flies infesting capsicum

This model predicted fruit flies catches

Model can be used for decision making in IPM

Future validation is needed

Future

Species identification

Species diversity

DNA Barcode

Validation of model for 3 years data

