About OMICS Group

OMICS Group is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 500 online open access <u>scholarly journals</u> in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 500 International <u>conferences</u> annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS International Conferences

OMICS International is a pioneer and leading science event organizer, which publishes around 500 open access journals and conducts over 500 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Orlando, Florida, USA July 27-29, 2015

Identification by deep sequencing and profiling of conserved and novel hickory microRNAs involved in the graft process

Bingsong Zheng

Zhejiang A & F University

Presentation Outline

- Introduction
- Morphological and physiologycal characterizations of hickory grafting
- microRNA identification in grafting
- Conclusions

1. Introduction

• Hickory (*Carya cathayensis*) is a member of walnut family. It is a very well-known nut tree in eastern China and mainly found in the area of Tianmu Mountain.

Hickory nut

Hickory Tree

155 genotypes were collected from Zhejiang, Anhui, Hunan, Guizhou, Yunan et al.

Figure 1 The geographical distribution of Hickory in China.

There are 5 Carya species native to China

C. cathayensis

C. dabieshanensis

C. hunanensis

C. tonkinensis

C. kweichowonsis

Figure 2 The Carya species in China.

Hickory is very important economically, since its nuts are good sources of oil and nutrients.

Table 1 Comparison of the oil contents among different oil trees.

Species	C. cathayensis	C.illinoinensis	Torreya grandis	Camellia oleifera
Oil content (%)	64.0~74.0	55.2~75.1	54.6~61.5	43.2~55.6
Unsaturated fatty acid (%)	88.4~95.8	80.1~84.5	74.9~79.5	83.6~86.6

The main limitation of this species is as follows:

- **1. Lack of new cultivars**
- 2. Difficulty in propogation
- **3. Slow growth and late maturation**
- 4. Low yield and poor quality

2. Morphological and physiological characteristics

Figure 3 Auxin fluctuation during graft process

Figure 4 IAA detection using immunocolloidal gold technique

Auxin plays a key role in the graft process in C. cathayensis.

(Liu et al., Scientia Silvae Sinicae, 2009)

Picture representation of leaf primordia development in the Hickory grafted plants at 30 days after grafting (dag) at various treatments.

(a) Graft plants

(b) IAA applied plants

(c) NPA applied plants

Types of scion and grafting time, the main factors affecting survival rate during graft process.

嫁接后天数/d 测定指标 嫁接时间 测定部位 5 9 15 25 30 含水量 4月3日 穗条 47.20 44.71 48.23 48.65 49.44 1% 砧木 44.22 44.94 45.03 46.70 46.48 4月23日 穗条 53.04 49.60 50.48 55.88 55.21 砧木 53.87 53.82 52.64 54.74 51.37 蛋白质含量 穗条 4月3日 47.00 54.60 67.30 48.80 38.20 砧木 /mg · g · ¹FW 43.50 44.00 62.20 29.80 28.30 4月23日 穗条 63.40 46.00 51.50 44.50 41.00 砧木 34.50 26.50 27.90 42.30 26.20

Table 2 Changes of water and soluble protein contents in grafted Carya cathayensis

Table 3 Changes of tannin contents of rootstock and scion in grafted Carya cathayensis

	湖中文化			嫁	接后天	数 /d	97	
烼 按凹囘	测定即位	5	6	9	11	13	15	30
4月3日	穗条	21.50	25.60	25.90	26.40	26.00	26.50	25.00
	砧木	13.30	14.80	13.70	17.80	20.20	17.30	21.60
4月23日	穗条	22.80	27.10	28.00	27.90	27.60	25.50	28.50
17	砧木	17.90	18.00	18.70	19.20	19.40	20.90	25.10

Table 4 Changes of polyphenol oxidase activities of rootstock and scion in grafted Carya cathayensis

安拉叶间	と当時で支払い	嫁 接 后 天 数 ∕d							
%	视走即位	5	7	13	20	30			
4月3日	穗条	23.80	34.30	30.80	42.70	45.20			
	砧木	20.30	21.00	29.40	32.90	64.40			
4月23日	穗条	38.50	52.30	82.60	87.20	109.30			
	砧木	32.20	38.90	62.90	66.70	74.20			

(Zheng et al., J. Fujian College of Forestry, 2001)

3. microRNA identification in hickory

Table 1 Statistical analysis of small RNAs from G0, G7, and G14 libraries

	Total sRNAs	Unique sRNAs
G0 library		
Raw reads	24,178,692	
clean reads*	23,920,471	5,677,759
Mapped to genomic	5,008,672	285,487
Match known miRNAs	2,299,835	40,896
The unknown sRNAs	17,562,958	5,522,235
G7 library		
Raw reads	21,053,214	
clean reads *	20,784,923	4,626,678
Mapped to genomic	5,916,530	285,847
Matchknown miRNAs	2,284,689	46,774
The unknown sRNAs	13,918,918	4,428,827
G14 library		
Raw reads	25,985,000	
clean reads *	25,440,366	5,156,299
Mapped to genomic	8,241,439	307,679
Matchknown miRNAs	3,657,771	47,645
The unknown sRNAs	15,699,933	4,913,829

Fig. 1 Small RNA from the G0, G7, G14 libraries in hickory. a Type distribution of different sRNA reads; b size distribution of sRNA reads

Table 2 Conserved miRNAs identified in hickory

members	miRNA sequence(5'-3')	size(nt)	Arm	Ratio		miRNA* star sequence(5'-3')		miRNA location
				G7/G0	G14/G0		LP(nt)	
cca-miR156a	UGACAGAAGAGAGAGAGAGCAC	20	5'	2.09	2.14		213	S1-contig20796:239:451
cca-miR156b	UGACAGAAGAGAGAGAGACAC	20	5'				213	S2-contig03286:470:682
cca-miR159a	UUGCAUAACUCGGGAGCUUC	20	3'	0.51	0.41		110	S1-contig00386:825:934
cca-miR159b	UUGCAUAACUCGGGAGCUUC	20	3'				110	S2-contig21174:824:933
cca-miR160	GCGUAUGAGGAGCCAUGCAUA	21	3'	2.23	2.31	UGCCUGGCUCCCUGUAUGCCA	122	S1-contig17417:140:261
cca-miR162	UCGAUAAACCUCUGCAUCCAG	21	3'	0.57	0.72	GGAGGCAGCGGUUCAUCGACC	125	S1-contig10935:510:634
cca-miR167	UGAAGCUGCCAGCAUGAUCUA	21	5'	0.97	1.86		105	S1-contig12781:470:574
cca-miR171a	UGAUUGAGCCGUGCCAAUAUC	21	3'	0.97	0.82	UAUUGGCCUGGCUCACUCAGA	139	S1-contig03840:260:398
cca-miR171b	UGAUUGAGCCGUGCCAAUAUC	21	3'				106	S1-contig04024:118:223
cca-miR172a	AGAAUCUUGAUGAUGCUGCAU	22	3'	0.68	0.31	UAGCAUCAUCAAGAUUCACAU	140	S1-contig24571:830:969
cca-miR172b	AGAAUCUUGAUGAUGCUGCAU	22	3'			UAGCAUCAUCAAGAUUCACAU	140	S2-contig24766:143:282
cca-miR390a	AAGCUCAGGAGGGAUAGCGCC	21	5'	0.67	0.60	CGCUAUCUAUCCUGAGUUUCA	126	S1-contig00035:117:242
cca-miR390b	AAGCUCAGGAGGGAUAGCACC	21	5'	0.58	0.48		113	S1-contig15630:137:249
cca-miR397	UCAUUGAGUGCAGCGUUGAUG	21	5'	0.55	0.28		88	S2-contig20035:1:88
cca-miR482a	UCUUUCCUAGUCCUCCCAUUCC	22	3'	0.77	0.84		96	S1-contig24624:282:377
cca-miR482b	UCUUUCCUACUCCUCCCAUUCC	22	5'	0.57	0.73		320	S1-contig01252:775:1094
cca-miR482c	UCUUUCCUACUCCUCCCAUUCC	22	5'				305	S2-contig06770:136:440
cca-miR482d	GGAAUGGGCUGUUUGGGAUG	20	5'	2.96	2.10	UUCCCAAAGCCGCCCAUUCCGAU	126	S2-contig16425:95:220
cca-miR530	UGCAUUUGCACCUGCACCUAU	21	5'	1.42	1.37		107	S1-contig10678:21:127
cca-miR827	UUAGAUGCCCAUCAACGAACA	21	3'	0.54	0.28	UUUGUUGAUGGUCAUUUAAU	108	S1-contig13866:108:215
cca-miR2118	UUGCCAAUUCCACCCAUUCCAA	22	3'	0.92	1.03	GGACAUGGGUGAAUUGGUAAGG	90	S2-contig02512:106:195

21 conserved miRNAs belonging to 13 miRNA families were identified. Of which, 9 miRNA*s were detected, which had strong evidence of being bona fide miRNAs

Table 3 Novel and potential novel miRNAs identified in hickory

		C :		Reads				1.000	TATA leasting	
mikivA	miRINA sequence(5-3)	3128	ann	G0	G 7	G14	LP	MFE	miRNA location	
cca-miRS1a	a UCUGAGGGAGUUGGAGAAUUG		3'	16	0	0	106	-29.1	\$1-contig00325:125:230	
cca-miRS1a*	AAAGUCUGUUCCUCCGCUUAGCUG	24	5'	1	0	0				
cca-miRS1b	UCUGAGGGAGUUGGAGA AUUG	21	3'	16	0	0	106	-29.1	S2-contig26861:50:155	
cca-miRS1b*	AAAGUCUGUUCCUCCGCUUAGCUG	24	5'	1	0	0				
cca-miRS2	AAUGGGAAGAUAGGAAAGAAC	21	5'	36172	47438	41174	115	-41.8	\$1-contig01252:1043:1157	
cca-miRS2*	UCUUUCCUACUCCUCCCAUUCC	22	3'	425	211	333				
cca-miRS3	AGUGGGAAGGCAGGAAAGAAA	21	5'	10171	13575	18636	90	-35.8	\$1-contig24624:286:375	
cca-miRS3*	UCUUUCCUAGUCCUCCCAUUCC	22	3'	5	5	3				
cca-miRS4	GCGUAUGAGGAGCCAUGCAUA	21	3'	0	855	0	122	-54.6	\$1-contig17417:140:261	

10 novel miRNAs and their corresponding miRNA*s belonging to 8 families were identified during the graft process in hickory

cca-miRS7	UCCCUACUCCGCCCAUGCCAUA	22	3'	0	0	3430	88	-50.8	\$1-contig06943:606:693
cca-miRS7*	UGGUAUGGGCGAGUUGGGAAG	21	5'	0	0	43			
cca-miRS8	UCAUCGAGGUGGAGUUUGGCU	21	5'	0	0	8	68	-20.3	\$2-contig02707:167:234
cca-miRS8*	UCAAAAUCGCAAGGUGGAGA	20	3'	0	0	7			
cca-miRS9	UGCUAUCUAUCCUGAGUUGC	20	3'	34	0	6	115	-60	\$1-contig15630:135:249
cca-miRS10	UCAAGGUCCAAGGUUCAACAC	21	5'	0	0	5	86	-35.3	\$1-contig04790:479:564
cca-miRS11	UUUUGGACAAAUCAGAUGAUG	21	3'	7	21	17	144	-29.86	\$2-contig15510:237:380
cca-miRS12	UUUGUUGAUGGUCAUUUAAUG	21	5'	1,390	1,078	707	87	-41.2	S1-contig13866:118:204
cca-miRS13	UUGUA GAUGU CGACGACGGAG	21	3'	6	6	0	161	-43.1	\$2-contig03553:19:179
cca-miRS14	AGGUGCAGGUUUAGGUGCAAA	21	3'	107	71	106	126	-43.2	\$1-contig10678:3:128
cca-miRS15	GGACGGUGAUGAGUACCAGAG	21	3'	0	10	0	154	-45.59	\$1-contig15644:44:197

Table 4 Differential expression miRNAs during the graft process in hickory

61	DNIA	2014	no	ormalized rea	ds	ra	ntio		
Tamily	MIKINA	sequence(5 - 5 ⁺)	G0	G7	G14	G7/G0	G14/G0	regulateu	
156	cca-miR156a	UGACAGAAGAGAGAGAGAGCAC	9.336	19.490	19.971	2.09	2.14	up-regulated	
150	cca-miR156b	UGACAGAAGAGAGAGAGAGCAC	9.336	19.490	19.971	2.09	2.14	up-regulated	
150	cca-miR159a	UUGCAUAACUCGGGAGCUUC	76.759	39.315	31.444	0.51	0.41	down-regulated	
cca-miR159b		UUGCAUAACUCGGGAGCUUC	76.759	39.315	31.444	0.51	0.41	down-regulated	
160	cca-miR160	GCGUAUGAGGAGCCAUGCAUA	18.215	40.696	42.028	2.23	2.31	up-regulated	
150	cca-miR172a	AGAAUCUUGAUGAUGCUGCAU	548.099	374.655	168.383	0.68	0.31	down-regulated	
172	cca-miR172b	AGAAUCUUGAUGAUGCUGCAU	548.099	374.655	168.383	0.68	0.31	down-regulated	
390	cca-miR390b	AAGCUCAGGAGGGAUAGCACC	151.402	87.779	72.545	0.58	0.48	down-regulated	
397	cca-miR397	UCAUUGAGUGCAGCGUUGAUG	137.419	74.960	38.165	0.55	0.28	down-regulated	
482	cca-miR482d	GGAAUGGGCUGUUUGGGAUG	205.008	606.635	430.055	2.96	2.10	up-regulated	
827	cca-miR827	UUAGAUGCCCAUCAACGAACA	5.062	2.716	1.429	0.54	0.28	down-regulated	
S12	cca-miRS12	UUUGUUGAUGGUCAUUUAAUG	57.673	51.371	27.311	0.89	0.47	down-regulated	

Fig. 2 qRT-PCR confirmation and comparative relative expressions of miRNAs isolated from hickory rootstock and scion at 0, 7, and 14 days postgraft. The expression levels of miRNAs were normalized to the level of 5.8S rRNA. The normalized miRNA levels at 0 day postgraft in hickory were arbitrarily set to 1

14 miRNAs and their expression trends were similar to the results obtained by Soelxa sequencing

Fig. 3 The expressions of the target mRNAs (genes) of miR156, miR159, miR390b, and miR827 isolated from hickory rootstock and scion at 0, 7, 14 days post-graft. The expression levels of target mRNAs were normalized to the level of ELF1a-1 gene. The normalized target mRNAs levels at 0 day post-graft in hickory were arbitrarily set to 1. The miRNAs are in black, and their corresponding target genes are displayed in white

Four miRNA target genes (cca-miR156, cca-miR159, cca-miR390 and cca-miR827) to perform qRT-PCR. The results suggested an inverse relationship between the expression of the miRNAs and the regulation of their corresponding target genes. This evidence further validated the reliability of miRNA sequences generated by Solexa sequencing. •155 genotypes were collected from Zhejiang, Anhui, Hunan, Guizhou, Yunan et al. Three new varieties were selected and certified.

•21 conserved miRNA sequences as well as 10 novel and ten potential novel miRNAs were identified during the graft process in hickory.

Acknowledgement

Saravama KUMAR Huiliang CHU Xue Al Miao CHEN Jia FANG Yongqing HE Bo JIANG Zhongxiang FANG Xiaojiao SIMA Wei REN Xiaoming CHEN Lingling QIU

Let Us Meet Again

We welcome you all to our future conferences of OMICS International

> Please Visit: http://transcriptomics.conferenceseries.com/

> > http://conferenceseries.com/

http://www.conferenceseries.com/genetics-and-molecularbiology-conferences.php