

World Pediatrics Congress 2017 - Orlando

Queen Fabiola University Children's Hospital

Hôpital Universitaire des Enfants Reine Fabiola

VESTIBULAR EVALUATION IN SEQUENTIALLY IMPLANTED CHILDREN: INTRODUCTION

- Many children with profound sensorineural hearing loss also display vestibular disorders (20 – 85%)
- At present there is evidence supporting:
 - The additional benefit of having bilateral cochlear implantation in deaf children
 - a high probability of postoperative vestibular modifications
 Vestibular modifications in 50% of the cases with 10% of complete
 vestibular loss after CI

ADDITIONAL BENEFIT OF BILATERAL IMPLANTATION IN CHILDREN

- → Better sound localization
- → Better speech perception in noise
- → Better quality of life

A SHORT INTRODUCTION TO VESTIBULAR PHYSIOLOGY

Labyrinth

Cochlea

Vestibule

→ saccule→ utricleOtolith organs

Semi-circular canals

A SHORT INTRODUCTION TO VESTIBULAR PHYSIOLOGY

Vestibular receptors (5)

Ampullary crest

→ angular accelerations

Utricular and saccular maculae

- → linear accelerations
- \rightarrow gravity

Functions

- Gaze stabilization (VOR)
- Body/head stabilization and postural adjustment (VCR VRS)

A SHORT INTRODUCTION TO VESTIBULAR PHYSIOLOGY

Vestibulo ocular reflex

- Stabilizes gaze during head movement
- Physiological nystagmus
- Generated by vestibular receptors
 - -aVOR (SCCs)
 - tVOR (otolithic organs)
- Most used in daily clinical practice is horizontal aVOR

VESTIBULAR EVALUATION IN SEQUENTIALLY IMPLANTED CHILDREN: OBJECTIVE

The objective of this study is to evaluate

 the impact of cochlear implants on vestibular function in sequential implantation

the risk of inducing a complete areflective status after second

implantation

POPULATION

- From January 2012 to May 2015
- 26 candidates for contralateral implantation

Population characteristics (n=26)							
Mean age at first examination	6,75 (range: 1 - 13)						
Brand of Implants	Cochlear						
Cochleostomy insertion site	Antero-inferior						
Etiology							
Syndromic	6						
Genetic	7						
Postmeningitic	2						
CMV	1						
ANSD	2						
Unknown	8						
CT scan, MRI							
Normal	19						
Vestibular malformation	3						
Cochlear malformation	1						
Cochleo-vestibular malformation	3						

Vestibular assessment before and 3 months after 2nd implantation

> Complete vestibular clinical evaluation

- Patient history (vestibular symptoms?)
- Postural stability, gait, and coordination
- Oculomotor assessment
- Spontaneous or gaze-evoked nystagmus
- Short neurological evaluation

> Horizontal canal evaluation (aVOR)

- Halmagyi test
- VOR testing on rotary chair
- **Bicaloric testing** with videonystagmoscopy
- > Otolithic evaluation
- cVEMP exam with tone bursts

VESTIBULAR EVOKED MYOGENIC POTENTIALS: C-VEMPS

- Elicited from the SCM muscle
- Assesses saccular and inferior vestibular nerve function (sacculospinal pathway)
- Recorded with standard ABR equipment and surface electrodes
- Stimulus: 500 Hz tone bursts, 74 dBnHL bone conduction
- P1-N1 wave, amplitude and latencies
- Pitfalls: SCM contraction
 - Otitis media with effusion

CALORIC TEST

- Bithermal caloric stimulation: ear irrigation at 30°c and 44°c during 30 sec
- Observation of eye movements by videonystagmoscopy (or VNG)
- Information about lateral SCCs only
- Canal paresis if Jonkees formula values ≥ 15%
- Not well tolerated in young children

VESTIBULAR STATUS OF THE TEST GROUP

Vestibular status before contralateral implantation

Before contralateral implantation

- ► 31% normal bilateral vestibular function
- ► 61% unilateral or bilateral hyporeflexia
- ► 8% bilateral areflexia

High prevalence of vestibular dysfunction in our test group (n=26)

Results c-VEMP testing Otolithic function modifications

VEMP responses

- ► Before 2nd CI: present in 19 patients
- ► After 2nd CI: present in 15 patients

→ 4/24 patients lost their VEMP responses (16%)

Follow-up group, n=24

Results bicaloric testing Horizontal canal function modifications

► Identical response: 18 patients (13 reactive – 5 areflective)

▶ Decrease: 3 patients

Increase: 2 patients (hyperexcitability?)

▶ Disappearance: 1 patient

→ Different responses in 6/24 patients

DISCUSSION: CVEMP TESTING

Only presence/absence of cVEMP response was considered

- Thresholds could not be determined for all children.
- Amplitude strongly depends on muscle contraction
- Biofeedback allows more precision

DISCUSSION

- Compliance for VEMP testing was high, in contrast to compliance for caloric testing
- 37% of patients had their vestibular function modified after their second implantation. However, none of the patients with a normal vestibular status at the 2nd implanted ear became areflectic

In patients with vestibular function modifications, one third manifested transitory postoperative vestibular symptoms (3/9).
Age-related?
(Chi-square test, p = 0,079)

■ No significative correlation between vestibular loss and inner ear malformation (Chi-square test, p = 0,8077)

VESTIBULAR EVALUATION IN SEQUENTIALLY IMPLANTED CHILDREN: CONCLUSIONS

- High prevalence of vestibular dysfunction among our test group
- Horizontal canal function seems more preserved than saccular function
- 16 % of our children presented a loss of saccular and/or horizontal canal function after second implantation.
 - Amongst these children, which percentage will have balance problems in older age?
- Larger series of patients are required in order to confirm our results about the impact of contralateral implantation on balance function
- This study confirms the importance of vestibular assessment before sequential implantation to prevent bilateral vestibular areflexia, especially if
 - there is hyporeflexia on the not yet implanted ear
 - independent walking is not acquired yet

CLINICAL CASE

26 months old girl, bilateral sequential cochlear implantation Horizontal canal areflexia

VESTIBULAR EVALUATION IN SEQUENTIALLY IMPLANTED CHILDREN: PRELIMINARY RESULTS

THANK YOU FOR YOUR ATTENTION

Complete test results

Patients	Etiology	P1/N1 CI contralat, pre	P1/N1 CI contralat, post	Variation A°	Caloric test pre 2nd Cl	Caloric test after 2nd CI	Imaging
1	Unknown	✓	65 db	=	Normal	Normal	Vestibular dysplasia
2	Genetic	✓	65 db	=	Hyporeflexia left	Symmetrization (right 凶)	Normal
3	Syndromic	0	0	=	Areflexia	Areflexia	Normal
4	Syndromic	74 db	0	×	Bilateral hyporeflexia	Bilateral hyporeflexia	Normal
5	Unknown	✓	60 db	=	Hyporeflexia right	Normal (right ↗, hyperexcitability?)	Normal
6	Genetic	✓	65 db	Я	Normal	Normal	Normal
7	Post meningitic	✓	60 db	=	Hyporeflexia left	Symmetrization (right 凶)	Cochlear ossification
8	Syndromic	✓	65 db	=	Areflexia right	Areflexia right	Normal
9	Unknown	0	0	=	Hyporeflexia left	Hyporeflexia left	Normal
10	Unknown	0	0	=	Hyporeflexia right	Hyporeflexia right (but ↗ right)	Normal
11	Genetic	74 db			Normal		Normal
12	Unknown	✓			Important hyporeflexia left		LVAS
13	Syndromic	60 db	60 db	=	Normal	Normal	cochleo-vestibular dysplasia
14	Syndromic	0	0	=	Bilateral hyporeflexia +++	Bilateral hyporeflexia +++	Normal
15	Genetic	65 db	74 db	=	× (tubes)	Normal	Normal
16	Unknown	60 db	65 db	=	Normal	Normal	Normal
17	Genetic	✓	✓	=	Normal	Normal	Normal
18	Unknown	✓	✓	=	Hyporeflexia left	Hyporeflexia left	Normal
19	ANSD	✓	✓	=	Hyporeflexia right	Bilateral hyporeflexia	Normal
20	ANSD	✓	0	×	Areflexia	Areflexia	Vestibular dysplasia
21	Genetic	✓	✓	=	× (tubes)	Hyporeflexia left	Normal
22	Post meningitic	0	0	=	Areflexia	Areflexia	Cochleo - vestibular ossification
23	Genetic	✓	0	×	Bilateral hyporeflexia	Bilateral hyporeflexia	Normal
24	unknown	✓	✓	=	Normal	Normal	Normal
25	Syndromic	✓	0	×	Hyporeflexia right	Areflexia	LVAS + cochleo-vestibular dysplasia
26	CMV	✓	✓	И	Areflexia	Areflexia	Normal