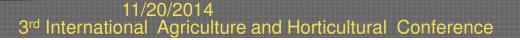
SOIL QUALITY INDEX FOR RICE USING GIS

Dr. B. Sailaja Scientist SS Computer Applications in Agriculture Directorate of Rice Research Rajendranagar, Hyderabad-30 Email: <u>bandasailaja@gmail.com</u> <u>saila r@yahoo.com</u>

- Rice is staple food for nearly half of the world's population and major daily source of calories
- Rice ranks second in agricultural production in most Asian countries
- In India, Rice area- 43 m.ha; Production 105 m.t (DES, 2012)
- Almost many regions are suitable to rice cultivation in India, still they are not producing the achievable yield.
- Efficient management of natural resources is essential for ensuring sustainability in rice production
- Continuous cultivation of rice in the same fields without assessing the soil quality is one of the factors influencing productivity



- In agricultural context, the soil quality is aimed at maximizing production without adversely affecting the environment.
- Potential physical, chemical and biological indicators with minimum data sets are suggested to evaluate soil quality
- There is no single correct indicator or index value because of inherent differences among soils, crops and climates (Sojka *et al.*, 2003)
- Soils are spatially variable and Geographical Information System(GIS) is useful for management and analysis of this variability.
- In this study, physical parameters of soils were used to assess soil quality.

Sojka, R.E., D.R. Upchurch and N.E. Borlaug, 2003. Quality soil management or soil quality management: Performance varsus semantics. Adv. Agron., 79: 1-68.

 Soil quality assessment framework is based on 5 physical parameters

a)Soil type, b)Soil depth, c)Soil drainage, d)Soil slope, e)Soil Erosion

- Assigned quality indicators based on a quality rating (Ochela and Kerkides, 2014) to each of the attributes(Table 1)
- Soil quality index has been calculated using Geometric mean of the attributes(Fig. 1)

W.O.Ochola, P.Kerkides, (2004), An Integrated indicators-based spatial decision supports system for land qualit y assessment in Kenya, Computers and Electronics in Agriculture 45(2004) 3 -26

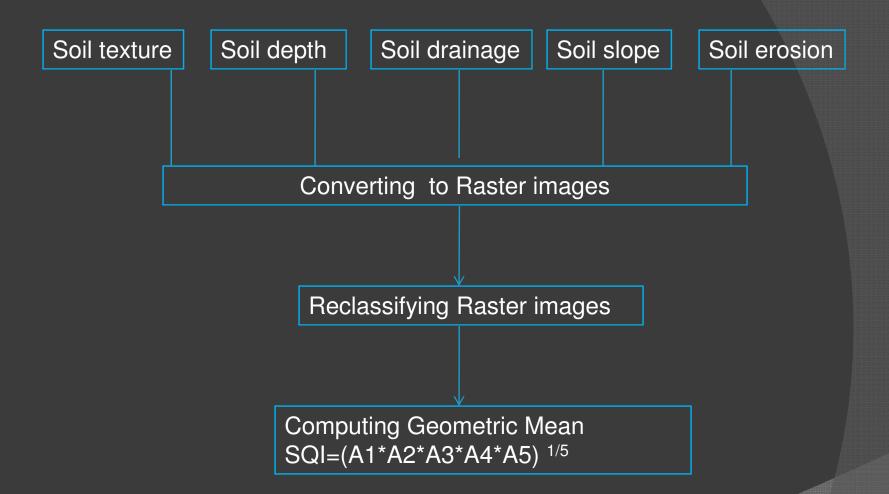
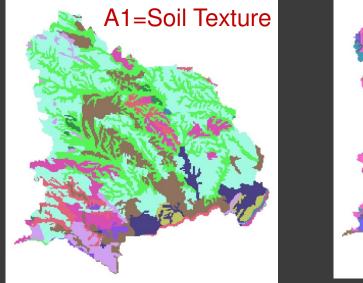


Table 1 : Soil quality indicators (Indicator – 0, for Water body).

Soil attribute	Indicators					
	Very Low(1)	Low(2)	Moderate(3)	High(4)	Very High(5)	
Texture	Clay, Cracking Clay Calcareous, Clay Calcareous ,Cracking Clay.	Gravally Clay	Loam Calcarious, Gravally Loam Calcarious.	Loam, Gravelly loam.		
Depth	10-25cm	25-50 cm	50-75 cm	75-100 cm 100-150 cm	>150 cm	
Slope		15-30% Moderate Steep slopping	8-15% Moderate Slopping	1-8% Very gentle	0-1% Level	
Drainage	Poorly drained	Excessively Drained	Well drained	Moderately poor drained	Somewhat excessive, Moderately Well drained	
Erosion	Severe Erosion	M oderate Erosion	Nil/Slight Erosion			



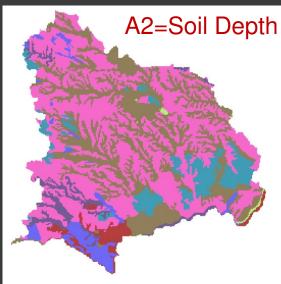
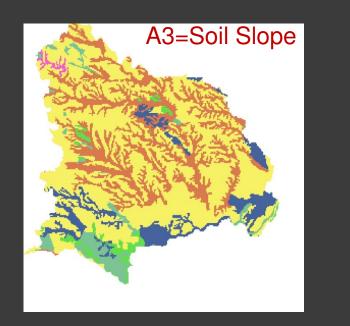
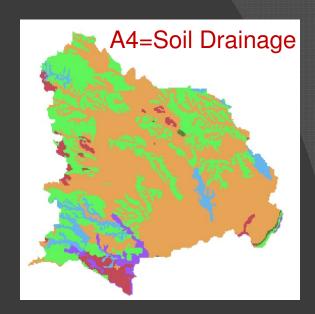

A1=Soil Texture; A2=Soil Depth; A3= Soil Drainage; A4=Soil Slope; A5=Erosion Status

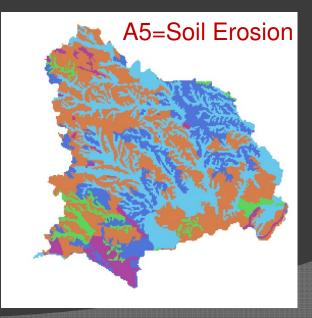
Figure 1 : Schematic representation of computation of soil quality index

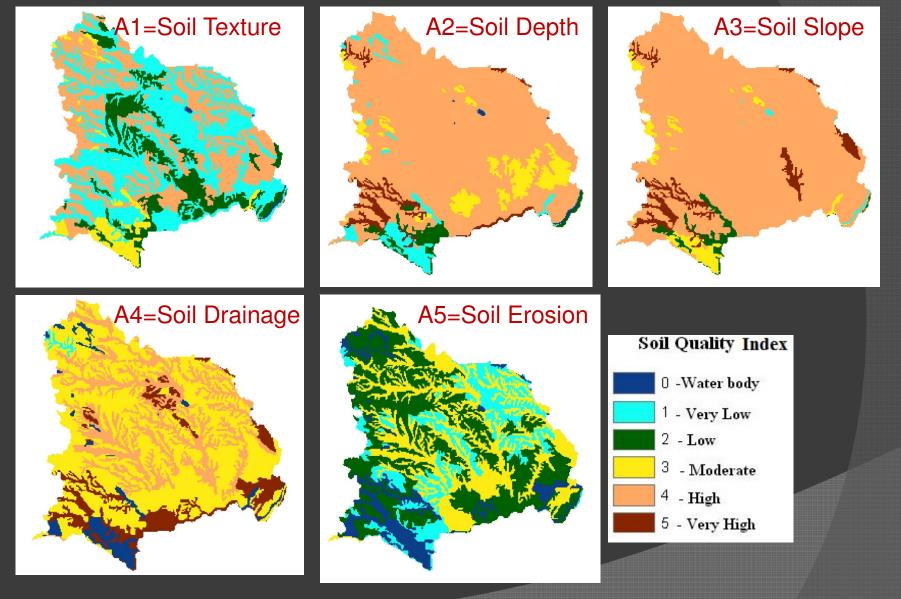
• Study area -Nalgonda district, Telangana, India

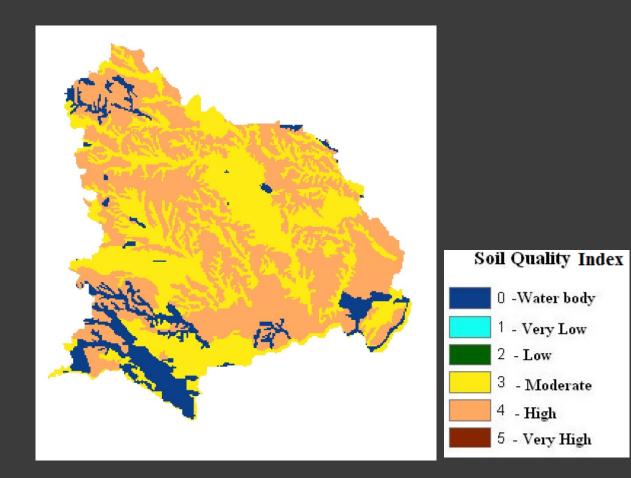
- Input datasets used for Soil type, Soil depth, Soil drainage, slope, and Soil erosion status -the soil map of Nalgonda District from National Bureau of Soil Survey & Land Use Planning (NBSSLUP).
- ArcGIS software was used for this analysis.



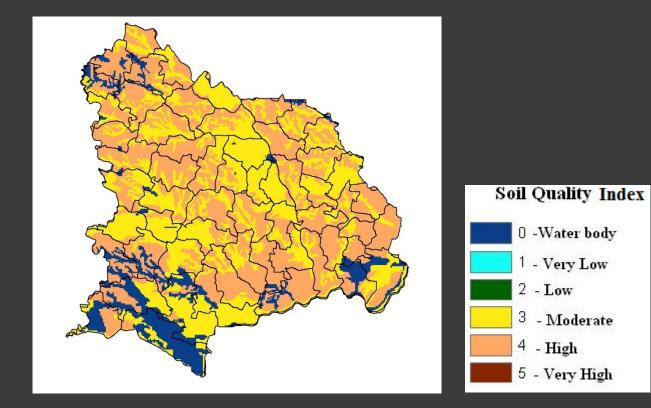







Reclassified Images

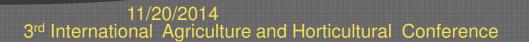
Soil Quality Index- Nalgonda district



Nalgonda Mandal Map

1	Bommalaramaram	32	Vemulapalle
2	M Turkapalle	33	Thipparthi
3	Rajapet	34	Nalgonda
4	Yadagirigutta	35	Munugode
5	Alair	36	Narayanapur
6	Gundala	37	Marri Guda
7	Thirumalagiri	38	Chandur
8	Thunga Thurthi	39	Kangal
9	Nuthankal	40	Nidamanur
10	Atmakur (S)	41	Thripuraram
11	Jaji Reddi Gudem	42	Miryalaguda
12	Saligouraram	43	Garide Palle
13	Mothkur	44	Chilkur
14	Atmakur (M)	45	Kodad
15	Valigonda	46	Mellachervu
16	Bhuvanagiri	47	Huzurnagar
17	Bibinagar	48	Mattampalle
18	Pochampalle	49	Nered Cherla
19	Choutuppal	50	Dameracherla
20	Ramannapeta	51	Anumula
21	Chityala	52	Peddavura
22	Narketpalle	53	Pedda Adiserlapalle
23	Kattangoor	54	Gurrampode
24	Nakrekal	55	Nampalle
25	Kethepalle	56	Chintha Palle
26	Suryapet	57	Devarakonda
27	Chivvemla	58	Gundla Palle
28	Mothey	59	Chandam Pet
29	Nadigudem		
30	Munagala		
31	Penpahad		

Overlay of Mandal map with Nalgonda SQI map


- This model will be further validated with the ground truth data.
- With analysis by Soil physical quality index , it is possible to assess land suitability with higher accuracy.
- Therefore, the present model will provide logical guidance for new land allocation for the cultivation of rice and potentially for other crops.

Thank you all

