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BACKGROUND

• Fabrication of operational sensors from nanostructures is 
less mature than MEMS sensors.

• No matter how good the sensor, if you cannot make 
contact with the sensor, then the device will be ineffective.

• Micro-nano integration/contacts 

– Major question for nanostructured based sensors: how are the 
nanostructured materials integrated into a micro/macro structure

• Cost effectiveness, time-efficient, controlled electrical contact 

• Typical standard method of deposition of nanostructures 
onto a sensor platform

– Disperse in suspension and deposit on a substrate

• Simple but difficult to reproduce

• Inability to mass produce sensors in a controllable way.
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BACKGROUND

• Manual methods generally involve repeatability issues e.g.

– Density of the nanorod or nanowire materials

– Quality of the contact

– Limited alignment 

– Device contacts are random and uncontrolled, rather than 
reproducible and uniform.

5

a) b)

a) nanorods contacted with the substrate 
via a silver epoxy

b) nanorods precipitated onto substrate 
between two electrodes
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BACKGROUND

• Attempts to control orientation and alignment of
nanostructures on microdevices:

– AFM or laser tweezers

• Labor-intensive

• Not viable for mass production

– e-beam lithography

• High-end processing

• Limited to nanodimensional linewidths (standard microfabrication
techniques require larger linewidth resolutions)

– Langmuir-Blodgett method

• Slow compression of dispersed nanostructures in organic solution on
substrate until desired structure is achieved.

• Range of materials is limited

– Superlattice nanowire pattern transfer (SNAP)

• Range of materials is limited.
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PREVIOUS WORK

• Integration of standard microfabrication techniques with 
the alignment of nanostructures 
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1) Deposit opposing sawtooth
patterns on a substrate using
standard photolithographic
techniques.

2) Coat the electrodes with a
photoresist mixture containing
nanostructures.

3-4) Use the sawtooth electrodes
and dielectrophoresis to align
the nanostructures.

5) Expose the electrodes while
the nanostructures are held in
place with photoresist.

6) Deposit the top metallic layer
over the bottom sawtooth
electrode pattern leaving
nanostructures buried in the
electrodes and complete
photoresist removal. The
dotted line is an alternate
pattern for the top metallic
layer that broadly covers the
bottom electrodes in a
rectangle, rather than the
sawtooth electrode pattern.

Fabrication steps of the alignment and deposition process. a) Top 
view and b) side view.

G.W. Hunter, et.al. Nanostructured Material Sensor Processing Using Microfabrication Techniques, Sensor 
Review 32/2 (2012) 106-117.   *Patent
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PREVIOUS WORK

• Advantages of this approach

– Through control of photoresist 
density and nanostructure 
concentration/dispersion, different 
densities of nanostructures can 
be obtained

– Length of nanostructures are 
affected by AC frequency used 
for alignment

– Improved electrical contacts

• Nanostructures are buried in a 
metallic contact “sandwich”

– Incorporation of nanomaterials 
into standard photolithographic 
processing procedures
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1.0 mm

Pt sawtooth 

electrodes

Pt contact 

pads

Alumina substrate 

(4 mm x 5 mm)

G.W. Hunter, et.al. Nanostructured Material Sensor Processing Using Microfabrication 
Techniques, Sensor Review 32/2 (2012) 106-117.   *Patent 
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PREVIOUS WORK

• Motivation:

– Build a SnO2-based sensor for H2 and hydrocarbons that can 
operate at room temperature as well as high temperatures.

– SnO2 is an n-type wide band gap (~3.6 eV) semiconductor.

– Sensors usually operate above 200°C due to their reaction
mechanism.
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(a) Adsorption of oxygen at the surface creates 

surface-acceptor sites that immobilize 

conduction band electrons from the near 

surface region, creating a depletion layer. 

(b) Reducing gases, such as CO, remove 

surface bound oxygen atoms, releasing the 

immobilized electrons, reducing the 

thickness of the depletion layer.

Schematic representation of the reactions occurring at the surface of an n-type

semiconductor metal oxide
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PREVIOUS WORK
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• The shaded part shows the core region 

and the unshaded part shows the 

depletion layer and GB = grain 

boundary. 

• a) D >> 2L, the conductance, which is 

higher in the non-depleted core region, 

is controlled by grain boundaries. 

• b) D ≈ 2L, where necks between 

coalesced primary grains control the 

conductance. 

• c) D < 2L, when the grains are small 

enough to be fully depleted the 

conductance is grain controlled [4]

A. Rothschild and Y. Komen. The effect of grain size on the sensitivity of nanocrystalline
metal-oxide gas sensors, J. App. Phys. 95, 6374 (2004).

Three mechanisms of conductance in metal-oxide gas sensitive materials: 

When the SnO2 crystallite size is

comparable with or less than 2L (~ 6

nm), where L is the depth of the space-

charge layer, the sensitivity can be

greatly increased.
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PREVIOUS WORK

• Dielectrophoretic alignment approach extended for use 
with other nanomaterials.

– Porous SnO2 nanorods via templated approach

• Room temperature methane detection

• High temperature methane detection (up to 500°C)
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100 nm

T = 300°C

A. Biaggi-Labiosa, et.al. A Novel Methane Sensor Based on Porous SnO2 Nanorods: Room Temperature to High Temperature Detection, Nanotechnology 23 (2012) 
455501.   *Patent pending
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EXPERIMENTAL

• Goal: Mass production of sensors with uniformly controlled 
properties.

– Broader applications

• Commercial MWCNTs (NanoLab) were used for the proof-
of-concept.

– Diameter 15±5 nm

– Length 5-20 µm

– S1805 photoresist solution concentration 2 mg/mL

• Array of paired patterned Pt electrodes on a 2” alumina 
wafer.

– Electrical connection in such a way that a field applied to one set of 
electrodes is simultaneously applied  to the full array on the wafer.

– Distance between opposing sawtooth electrodes ~1-2 µm

– 20 MHz, 10 Vp-p, 0 Voffset for 20 min
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RESULTS AND DISCUSSION

• Design

– There are 16 patterns, each with 146 opposing sawtooth electrodes 
for a total of 2336 electrodes.

– Can be separated into individual sensors.
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RESULTS AND DISCUSSION

• Proof-of-concept

– SEM images of aligned MWCNTs on the whole wafer
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a) Lower magnification to show

alignment on more than one

sawtooth electrode.

b) Alignment of a few nanotubes

between opposing electrodes.

c) Alignment of more nanotubes

between opposing electrodes.

d) Image of alumina substrate

showing that there are no

nanotubes (or a little amount)

demonstrating that the nanotubes

are found between opposing

electrodes.

Managed to obtain alignment on 2313 of the
2336 electrodes for a 99% yield.
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SUMMARY

• Standardized approach to chemical sensors 
processing using nanostructures.

– Integration and alignment of nanostructures with 
microfabrication methods.

• Mass production of sensors with uniformly controlled 
properties.

• Approach addresses significant barriers in integrating 
nanotechnology with microsensors, such as 

– Deposition control 

– Contact robustness

– Simplified processing
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SUMMARY

• Resulting sensors can be used in applications where 
presently microsensors are used.

• Further refinement of the DEP and photoresist 
suspension are planned to increase and to better 
control the yield for each paired contact pattern.

• Current work in applying mass production approach 
with metal oxide nanostructures.
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