

The effect of the upstream wind conditions on the performance of a vertical axis wind turbine (VAWT)

Dr. Ava Shahrokhi Prof. Lin Ma Prof. Derek Ingham Prof. Mohamed Pourkashanian Mr. Ioannis Bouras

Content

- 1. Overview of VAWT
 - Characteristics of a VAWT
 - Aerodynamic Principal
 - VAWTs in the Urban Environment
- 2. Aims and objectives
- 3. Simulation
 - Problem Specification
 - Mesh Generation
 - CFD model
- 4. Results
 - Flow Visualisation
 - Performance Analysis
- 5. Conclusion

Characteristics of a VAWT

Advantages

- Omni directional
- Heavy mechanisms can be located at ground level
- Less visually intrusive
- Generally quieter than HAWTs
- Suitable for urban and rural regions

Disadvantages

- Lower efficiencies
- Not typically self-starting
- Torque variation can instigate
 vibration problems

Aerodynamic principal of a Darrieus VAWT

Tip speed ratio
$$\lambda = \frac{V_T}{V_{\infty}}$$

Average tangential force $\overline{F}_T = B \frac{1}{2\pi} \int_0^{2\pi} F_T d\theta$
Power coefficient $C_P = \frac{\overline{F}_T R \omega}{\frac{1}{2} \rho A V_{\infty}^3}$
Thrust coefficient $C_{thurst} = \frac{\overline{F}_x}{\frac{1}{2} \rho A V_{\infty}^2}$
 $\overline{F}_x = \frac{B}{S_{circle}} \int_0^{z_{circle}} F_x ds$

Overview

Aims & Objectives

Simulation

Results

Conclusion

VAWTs in the Urban Environment

Results

Aims and Objectives

The majority of the VAWT simulations include solely the turbine, whereas in practice inflow conditions are influenced by the surrounding environment.

The current presentation aims to:

- □ Investigate the effect of the presence of a building where the turbine is installed.
- □ Examine the effects of the ground roughness.

All of the simulations are performed using Computational Fluid Dynamics.

Aims & Objectives

Simulation

Results

Conclusion

Problem Specifications

Turbine Specifications					
Airfoil profile	DU 06-W-200				
Number of blades	6				
Radius	1m				
Swept Area	4 m ²				

Operational Conditions					
Wind velocity	10 m/s				
Tip Speed Ratio	1.99				
Rotational Velocity	19.9 rad/s				

The effect of the roughness in the form of the inlet velocity profile: Two different cases are considered.

Computational Domain and Boundary Conditions

Unsteady simulation for VAWT:

Mesh: Hybrid (V2: 1M), Moving frame for rotating core Turbulence model: k-omega/SST Turbulent intensity (%): 20 Turbulence length scale (m): 7

Results

Meshing

The simulation is performed for three cases:

- 1. VAWT without the building considering a uniform velocity at inlet, Case(1)
- 2. VAWT with simplified building considering a uniform velocity at inlet, Case(2)
- 3. VAWT with simplified building considering a velocity profile at inlet, Case(3)

Aims & Objectives

Simulation

Results

Conclusion

Interface Analysis

Results

Convergence Analysis

OverviewAims & ObjectivesSimulationResultsConclusionFlow Visualisation: VAWT without the Presence of
the Building (Casel)

Results

Conclusion

Velocity Vectors, with Building, Case(1)

Conclusion

Velocity Vectors, with Building, Case(2)

Results

Performance Analysis

Case	Inlet type	Average velocity at inlet (ms ⁻¹)	$\overline{C_m}$	Torque (Nm)	Power (kW)
Without Building (case 1)	Uniform velocity	10.0	0.20	49.0	0.975
With building (case 2)	Uniform velocity	10.0	0.495	121.3	2.41
With building (case 3)	Velocity profile	7.69	0.63	115.9	2.31

Results

Conclusion

Flow Animation

Limitations of results

- This was a 2D simulation, in reality turbine power will be substantially lower than the 2D prediction. As the blade tip losses are not considered in a 2D simulation. Blade tip losses also reduce the power of the turbine.
- Computational resources limited the accuracy of the data obtained.

- □ 3 different Cases of a VAWT have been studied using 2D CFD
- The effects of skewed flow induced by the building lead to a region of increased velocity above the building.
- Power achieved by a VAWT can be significantly increased if located on a building in comparison to a free stream.
- The power was slightly decreased when ground roughness was considered.

Acknowledgements

This study has been a part of a European project "New innovative solutions, components and tools for the integration of wind energy in urban and peri-urban areas" (acronym SWIP, project no. 608554).

Thank you for your Attention!