

Algorithms for Optimal Scheduling of Multiple Spacecraft Maneuvers

Atri Dutta

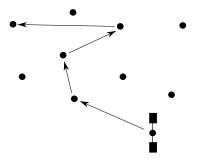
Aerospace Engineering Wichita State University

International Conference and Exhibition on Satellite Houston, TX August 19, 2015

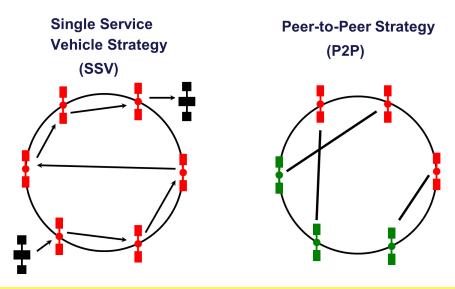
WSU Astronautics Research Laboratory (2014 –)

- Multi-rendezvous mission planning
- All-electric satellites
- Spacecraft attitude control
- CubeSat for science experiments and technology demonstration

Presentation Overview

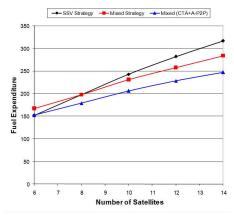


1 Motivation


- 2 Optimal Transfer for a Spacecraft
- 3 Maneuvers by a Single Servicing Spacecraft
- Concluding Remarks

Active Debris Removal

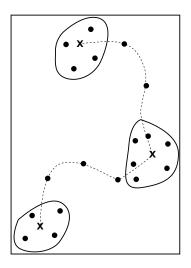
- Recent studies have indicated that at least 5 objects need to be removed every year for stable on-orbit debris management
- Many debris removal techniques likely require multi-rendezvous mission planning


Servicing of Satellite Constellations

Mixed Servicing Strategy

- Mixed strategy outperforms the single service vehicle strategy with increasing number of satellites in the constellation
- Mixed strategy does even better with asynchronous maneuvers and optimal P2P trip times

Comparison of Refueling Strategies

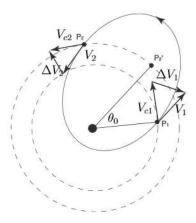

*Dutta and Tsiotras, "Asynchronous Optimal Mixed Peer-to-Peer Satellite Refueling Strategies," Journal of the Astronautical Sciences, Vol. 54 (3-4), Dec 2006, pp. 543-565.

Challenges

- Continuous optimization: optimization over transfers
- Combinatorial aspects: target selection, optimization over sequences
- NP-hard: polynomial time algorithm
- Researchers have used genetic algorithms, branch-and-bound methods, Greedy random adaptive search procedures

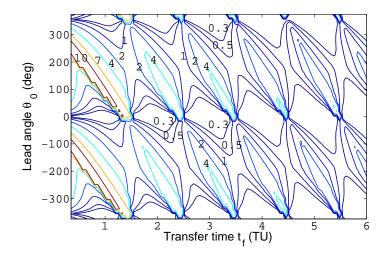
Greedy Random Adaptive Search Procedure

- Widely used in operations research community to solve k-assignment problem
- Multiple phases: construction of a basic feasible solution, local search, path relinking
- Known to yield good quality solutions

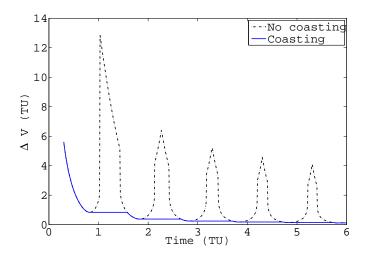

Presentation Overview

1 Motivation

Optimal Transfer for a Spacecraft

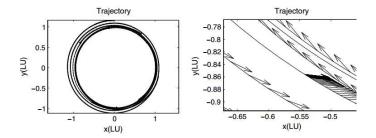

- 3 Maneuvers by a Single Servicing Spacecraft
- Peer-to-Peer Maneuvers
- 5 Concluding Remarks

Two-Impulse Transfer



• Multi-revolution solutions to Lambert's Problem

Circular Orbit Rendezvous Cost (1 of 2)



Circular Orbit Rendezvous Cost (2 of 2)

Low-Thrust Rendezvous

- Lower the propulsive cost of missions
- Enhance the flexibility of missions

Presentation Overview

1 Motivation

2 Optimal Transfer for a Spacecraft

3 Maneuvers by a Single Servicing Spacecraft

Peer-to-Peer Maneuvers

5 Concluding Remarks

Problem Statement

- Service vehicle needs to visit *m* out of *n* candidate targets s_1, s_2, \ldots, s_n
- Sequence $\sigma : \mathcal{J} \mapsto \mathcal{I}$, where $\mathcal{J} = \{1, 2, \dots, m\}$ and $\mathcal{I} = \{1, 2, \dots, m\}$
- Time at which transfers take place: τ_i, where i ∈ J, Time duration of the maneuvers: t(σ(i), σ(j)), where i, j ∈ J, Maximum mission time T
- Objective is to minimize cost of a sequence

$$\min_{\sigma(\mathcal{I})} \mathcal{C}(\sigma(\mathcal{I}))$$

Basic Feasible Solution

• Set time duration for the transfers to be equal at the beginning

$$t(\sigma(i), \sigma(i+1)) = rac{T}{m+1}, ext{ for all } i \in \mathcal{I}$$

 Cost is uniquely defined for each transfer (i, j), only a subset of these transfers are considered based on some user-defined value η

$$\mathcal{E}_0 = \mathcal{E} \setminus \{ (i,j) : c(i,j) > \underline{c} + \eta(\overline{c} - \underline{c}) \}$$

• The elements of $\sigma(\mathcal{J})$ are picked in *m* iterations, with the element *k* being picked in the k^{th} iteration

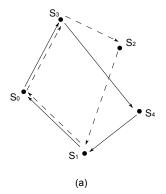
$$(k-1,k)\in \mathcal{E}_{k-1}$$

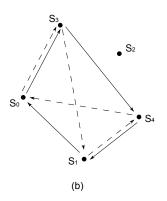
• Selection of a target will make irrelevant several transfers that are dropped from the set being considered

Local Search (1 of 2)

• Difference between two sequences:

$$\delta(\sigma_1, \sigma_2) = \{k : \sigma_1(k) \neq \sigma_2(k)\}$$

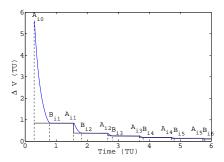

• Distance between two sequences is simply the cardinality of the difference between them:


$$d(\sigma_1, \sigma_2) = |\delta(\sigma_1, \sigma_2)|$$

• Neighborhood of the sequence is given by all sequences that have distance less than or equal to k

Local Search (2 of 2)

- We consider $k \leq 2$
- (a) $\{0,3,4,1,0\}$ and $\{0,3,2,1,0\}$
- (b) $\{0,3,4,1,0\}$ and $\{0,3,1,4,0\}$



Numerical Example

• Visiting 5 satellites out of 8 in a circular orbit.

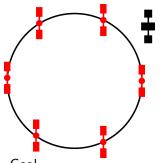
	Basic Feasible	Cost	Targets
	Solution	(DU/TU)	Not Visited
-	$s_0 \rightarrow s_5 \rightarrow s_2 \rightarrow s_7 \rightarrow s_3 \rightarrow s_8 \rightarrow s_0$	0.6730	s_1, s_4, s_6
1	$s_0 \rightarrow s_5 \rightarrow s_2 \rightarrow s_7 \rightarrow s_3 \rightarrow s_1 \rightarrow s_0$	0.6166	s_4, s_6, s_8
2	$s_0 \rightarrow s_5 \rightarrow s_1 \rightarrow s_7 \rightarrow s_3 \rightarrow s_2 \rightarrow s_0$	0.5820	s_4, s_6, s_8
3	$s_0 ightarrow s_5 ightarrow s_1 ightarrow s_7 ightarrow s_4 ightarrow s_2 ightarrow s_0$	0.0036	<i>s</i> ₃ , <i>s</i> ₆ , <i>s</i> ₈
4	$s_0 ightarrow s_5 ightarrow s_1 ightarrow s_6 ightarrow s_4 ightarrow s_2 ightarrow s_0$	0.0025	<i>s</i> ₃ , <i>s</i> ₇ , <i>s</i> ₈
5	$s_0 \rightarrow s_5 \rightarrow s_1 \rightarrow s_6 \rightarrow s_4 \rightarrow s_2 \rightarrow s_0$	0.0025	<i>s</i> ₃ , <i>s</i> ₇ , <i>s</i> ₈

Optimal Transfer Time Allotments

- Binary Integer Programming Problem (Shen and Tsiotras, 2003)
- Iterative algorithm: avoid the solution of the binary integer programming problem (ASC, 2015)

Presentation Overview

1 Motivation


2 Optimal Transfer for a Spacecraft

3 Maneuvers by a Single Servicing Spacecraft

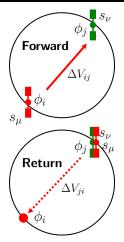
Peer-to-Peer Maneuvers

5 Concluding Remarks

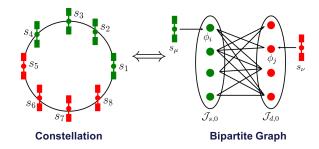
Problem Statement

Given

- Fuel-deficient satellites
- Service spacecraft
- Satellite characteristics
- Maximum time for mission


Allow

• Orbital transfers for delivery of fuel to fuel-deficient satellites


Goal

- Minimum fuel expenditure during the overall refueling mission
- All satellites must be fuel-sufficient at the end of refueling mission

P2P Maneuver and Constellation Graph

Satellite roles (active/ passive) not known apriori!

Feasible P2P Maneuvers

- Active satellites have enough fuel to complete their forward trips
- Both satellites must be fuel-sufficient at the end of a P2P maneuver

NP-hard P2P Problem

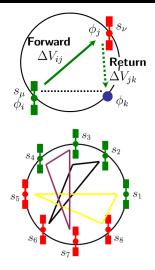
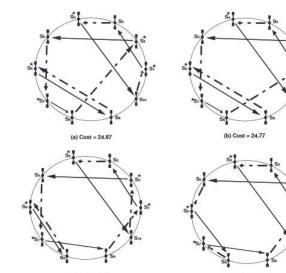


Figure: E-P2P Maneuver.


Assumption: All satellites are similar, perform similar functions and can interchange their orbital positions.

- 3-index assignment problem
- Good-quality solutions

*Dutta and Tsiotras, "An Egalitarian Peer-to-Peer Satellite Refueling Strategy," Journal of Spacecraft and Rockets, Vol. 45 (3), 2008, pp. 608-618.

*Coene, Spieksma, Dutta and Tsiotras, "On the Computational Complexity of P2P Refueling Strategies," INFOR: Information Systems and Operational Research, Vol. 50, No. 2, 2012, pp. 88-94.

P2P Local Search

(c) Cost = 22.61

(d) Cost = 20.48

General P2P Strategy

C-P2P + E-P2P

Lower Bound Computation

- Bipartite matching
- Solvable in polynomial time

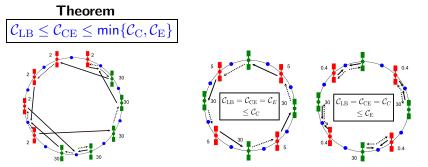
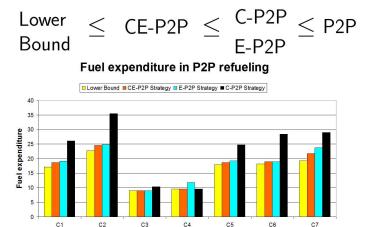
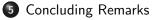



Figure: C-P2P Maneuver.

Figure: Global Minima (Cost = Lower Bound).

*Dutta and Tsiotras, "A Network Flow Formulation for Cooperative Peer-to-Peer Refueling Strategies," Journal of Guidance, Control and Dynamics, Vol. 33(5), 2010, pp. 1539-1549.

Comparison of (Impulsive) P2P Strategies


Constellations

*Dutta, "Optimal Cooperative and Non-Cooperative Peer-to-Peer Maneuvers for Refueling Satellites in Circular Constellations," Ph.D. Dissertation, Georgia Institute of Technology, Atlanta GA USA, 2009.

Presentation Overview

1 Motivation

- 2 Optimal Transfer for a Spacecraft
- 3 Maneuvers by a Single Servicing Spacecraft
- 4 Peer-to-Peer Maneuvers

Concluding Remarks

- GRASP Methodology is useful for both types of multi-rendezvous maneuver planning problem
- Good-quality solutions for P2P servicing problem
- Preliminary framework developed for SSV case
- Straightforward to incorporate operational constraints like mandatory target visits and imposed roles on satellites
- GRASP methodology can incorporate low-thrust transfers and cooperative rendezvous maneuvers
- Future research focussed on extending the studies in a number of ways