### Clinical and experimental studies on theophylline toxicity: in search for and antidote

Arunabha Ray

Department of Pharmacology Vallabhbhai Patel Chest Institute University of Delhi, Delhi-110 007, India

Toxicol-2014, Chicago

## Methylxanthines

- Methylxanthines have been effectively used therapeutically in respiratory disorders, e.g. COPD, asthma, cor pulmonale, apnea in newborns, etc.
- Caffeine (Tea/Coffee) and theophylline (as a drug) commonly used
- Theophylline, a methylxanthine bronchodilator, given for asthma and COPD, and newer uses emerging
- Steroids are the first line of drugs for asthma but are given along with bronchodilators like theophylline to reduce their dosage and reverse steroid resistance
- Theophylline is an effective, pharmacoeconomically viable drug, but has a narrow therapeutic index, i.e. low margin of safety

# Theophylline...

- Toxicity profile includes cardiotoxicity, GI toxicity and CNS toxicity
- Susceptibility to cardiac arrhythmias and seizures is particularly increased in asthmatics in extremes of age
- Cardiac arrhythmias and seizures not preceded by milder warning symptoms and conventional anti consultants are only partially effective against these seizures
- However, in view of its recently demonstrated anti-inflammatory and immunomodulatory effects, it is re-emerging as an important adjunct to therapy in asthma and COPD
- Strategies are being devised to improve the safety profile

# Theophylline.....

- Adenosine antagonism and PDE inhibition are commonly proposed mechanisms of action of theophylline
- CV effects due to increased vascular tone, myocardial contractility, conduction and sympathetic nervous system
- A combination of hemodynamic and neurohumoral effects
- Chronic methylxanthine intake increases CNS and cardiac risk factors
- Mechanisms of such toxicity poorly understood

# PHARMACOVIGILANCE

- The science and activities relating to the detection, assessment, understanding and prevention of adverse effects or any other drug-related problems
- A tool for drug safety
- Primarily a regulatory issue, but data/concept may to extended to device pharmacological strategies for rational therapy

# **ADR monitoring in Asthma and COPD**

- 120 patients of bronchial asthma and COPD were selected from the VPCI OPD
- Ethical clearance and GCP guidelines
- Standard inclusion/exclusion criteria
- Diagnosed by clinical features and PFT findings
- ADR profile was recorded as per Pharmacovigilance Programme of India proforma
- Dechallenge and rechallenge were done wherever appropriate
- Causality Assessment was done by using the Naranjo`s scale

#### ADR profile with drugs in asthma and COPD

| Drugs                      | Br. Asthma  | COPD        | Profile                                                        |
|----------------------------|-------------|-------------|----------------------------------------------------------------|
| Inhaled steroids           | 54/60 (90%) | 30/60 (50%) | Sore<br>throat,dysguesia,h<br>oarseness,gloss-<br>itis, others |
| Inhaled anticholinergics   | 25/40 (62%) | 10/44 (23%) | Dry mouth,thirst,<br>urinary difficulty                        |
| Inhaled beta-2<br>agonists | 25/60 (43%) | 3/60 (5%)   | Hand tremors, palpitations                                     |
| Oral steroids              | 28/32 (87%) | 3/14 (21%)  | Wt. gain, acne,<br>cramps, mood<br>changes                     |
| Oral<br>theophylline       | 14/20 (70%) | 20/43 (46%) | Anxiety,<br>dyspepsia, ms<br>spasm,<br>paresthesia, etc        |

# ADR monitoring in OAD...

- Sex distribution of patients were equal in asthma whereas COPD patients were predominantly males
- All patients received multi-drug treatment schedules (inhalation and oral)
- Most patients received inhaled steroids and bronchodilators
- Few received mucolytics, antibiotics, analgesics, etc.

# Prescription monitoring in obstructive airway disease (theophylline)

| Prescriptions | Total No. | With<br>theophylline | %    |
|---------------|-----------|----------------------|------|
| All patients  | 120       | 63                   | 52.6 |
| Br. Asthma    | 60        | 20                   | 33.3 |
| COPD          | 60        | 43                   | 71.6 |

## **ADR incidence with theophylline**

| Patients   | Received<br>Theophylline | Showed<br>ADRs | %    |
|------------|--------------------------|----------------|------|
| Br. Asthma | 20                       | 14             | 70   |
| COPD       | 43                       | 20             | 46.5 |
| Total      | 63                       | 34             | 53.9 |

### Incidence of ADRs with theophylline in asthma and COPD

| ADR                                             | Asthma | COPD |
|-------------------------------------------------|--------|------|
| Dyspepsia                                       | 45%    | 65%  |
| Anxiety/Palpitation                             | 50%    | 60%  |
| Spasm of Muscles                                | 35%    | 30%  |
| Insomnia                                        | 40%    | 10%  |
| Dizziness                                       | 15%    | 10%  |
| Theophylline Withdrawal<br>Induced Constipation | -      | 5%   |
| Paraesthesia                                    | 20%    | 10%  |
| Others                                          | 10%    | 5%   |

#### CASUALITY ASSESSMENT OF ADRs DUE TO ORAL THEOPHYLLINE USING THE NARANJO'S SCALE

| Drug         | Highly<br>Probable (9) | Probable<br>(5-8) | Possible (1-4) | Doubtful<br>(0) |
|--------------|------------------------|-------------------|----------------|-----------------|
| Oral         | Muscle spasm           | (1)Dyspepsia      |                |                 |
| Theophylline | of calves (most        | (2)Insomnia       |                |                 |
|              | commonly)              | (3) Anxiety &     |                |                 |
|              | sternocleido-          | Palpitation       |                |                 |
|              | mastoid,               | (4)Dizziness      |                |                 |
|              | intercostal            | (5)Withdrawal     |                |                 |
|              | muscles                | induced           |                |                 |
|              |                        | Constipation      |                |                 |
|              |                        | (6)Paraesthesia   |                |                 |
|              |                        | (7)Colicky        |                |                 |
|              |                        | Pain              |                |                 |
|              |                        | (8)Diuresis       |                |                 |

# Summary

- Most ADRs were mild to moderate in nature and tolerable
- Few, particularly those related to oral steroids and theophylline, were intolerable and required dose reduction
- Causality assessment showed that most were in the probable category (score from 5 8)
- Some effects of oral theophylline and steroids were having scores > 9 (highly probable)
- Such focused studies are helpful in reducing ADRs in OAD and rationalizing drug therapy

# **Reverse Pharmacology**

- Experimental evaluation/documentation of clinically observed findings
- Reverse pharmacology is an alternative strategy for new drug development
- Reverse pharmacology can play an important role in safety pharmacology studies
- A practice which was successfully employed in the past (eg. Reserpine) and is being more scientifically implemented now

## **Reverse pharmacology studies: Basis**

- The role of oxidant/anti-oxidant balance in obstructive airway disease has been proposed
- Oxidative stress and drug toxicity connection: adriamycin, paracetamol, etc.
- A connection between theophylline and oxidative stress: OFRs formed during xanthine-XO interactions
- Earlier studies showed that theophylline induced seizures were attenuated by antioxidants
- Preclinical study planned to evaluate the MOA of Theophylline induced ADRs viz. anxiety and tachycardia

## Effects of anti-oxidants on Aminophylline induced Anxiety

| Treatment           | <b>Elevated Plus Maze (%)</b> |                             |  |
|---------------------|-------------------------------|-----------------------------|--|
| (mg/kg)             | OA entry                      | OA time                     |  |
| Vehicle             | $30.0 \pm 5.6$                | $23.2 \pm 3.6$              |  |
| Amino (50)          | $16.6 \pm 4.2^*$              | $13.3 \pm 2.8*$             |  |
| Amino (100)         | $9.0 \pm 1.3^{*}$             | $5.3 \pm 1.1^{*}$           |  |
| TP(40)+Amino(100)   | $22.2 \pm 7.0$                | $15.2 \pm 5.0$              |  |
| Mel(50)+ Amino(100) | $18.7 \pm 6.5^{a}$            | $12.1 \pm 4.6$ <sup>a</sup> |  |

\_\_\_\_\_

n=8/ group ; TP: tocopherol; Mel: melatonin
\* p< 0.05 (compared to vehicle)</li>
a. p<0.05(compared to Amino-50)</li>

#### Aminophylline (A) induced anxiety and oxidative stress markers

| Treatment<br>(mg/kg) | EPM<br>(%OAE)  | Brain MDA<br>nmol/mg pr. | Brain GSH<br>µmol/g tissue |
|----------------------|----------------|--------------------------|----------------------------|
| Controls             | $23.6 \pm 3.1$ | $5.2 \pm 0.5$            | $9.8 \pm 0.3$              |
| A (100)              | 9.0 ± 1.3 *    | 8.2 ± 1.2 *              | 6.7 ± 0.8 *                |
| A (50)+ RS           | 4.0 ± 1.2 *    | 7.6 ± 0.4 *              | $4.9 \pm 0.4 *$            |
| TP + A (100)         | $17.1 \pm 4.4$ | $5.0 \pm 0.2$            | $8.0 \pm 0.3$              |
| Mel + A (100)        | $22.6 \pm 3.8$ | $4.2 \pm 0.5$            | $7.6 \pm 0.5$              |

### **Effects of aminophylline on Mean B.P and Heart rate**

| Treatment (mg/kg)      | Mean B.P(mm<br>Hg) | Heart rate(BPM)   |
|------------------------|--------------------|-------------------|
| Controls               | $70.96 \pm 2.30$   | $413.79 \pm 5.60$ |
| Aminophylline (50)     | $81.00 \pm 6.45$   | $402.90 \pm 8.52$ |
| Aminophylline<br>(100) | 80.18 ± 3.33       | 480.00 ± 6.15 *   |
| Aminophylline (150)    | 91.66 ± 7.20 *     | 531.00 ± 16.66 *  |

## ECG TRACING BY BIOPAC SYSTEM

#### **CONTROL**

#### AMINO-50



### ECG TRACING BY BIOPAC SYSTEM

AMINO (100 mg/kg)

#### AMINO(150mg/kg)



# Effects of tocopherol on aminophylline induced cardiotoxicity

| Treatment(mg/kg)                          | Mean B.P         | Heart rate                  |
|-------------------------------------------|------------------|-----------------------------|
| Control                                   | $70.96 \pm 2.30$ | $413.79 \pm 5.60$           |
| Amino (150)                               | $91.66 \pm 7.20$ | 531.00 ± 16.66 *            |
| α-tocopherol (20) +<br>Amino(150)         | 91.80 ± 6.96     | 529.40 ± 19.18              |
| $\alpha$ -tocopherol (40) +<br>Amino(150) | 72.62 ± 11.49    | 405.88 ± 29.37 <sup>a</sup> |

## Antioxidants and aminophylline toxicity

 $\alpha$ -TP (40 mg/kg) + AMINO (100 mg/kg)  $\alpha$ -TP (40 mg/kg) + AMINO (150 mg/kg)



# Effects of Aminophylline on oxidative stress markers

| Group                       | MDA<br>(nmol /mg<br>protein) | GSH<br>(µmol/mg protein) | SOD<br>(U/mg protein) |
|-----------------------------|------------------------------|--------------------------|-----------------------|
| Controls                    | $0.35 \pm 0.06$              | $0.57 \pm 0.03$          | $0.51 \pm 0.15$       |
| Aminophylline<br>(50 mg/kg) | $0.42 \pm 0.10$              | $0.54 \pm 0.09$          | $0.60 \pm 0.21$       |
| Aminophylline<br>(100mg/kg) | 0.66 ± 0.08 *                | 0.44 ± 0.06              | 0.44 ± 0.40           |
| Aminophylline<br>(150mg/kg) | 1.02 ± 0.18 *                | 0.40 ± 0.07 *            | 0.30 ± 0.02 *         |

# Effects of α-tocopherol (TP) on aminophylline (A) induced cardiotoxicity



# **Summary and Conclusion**

- These experimental studies show that theophylline-induced anxiety and tachycardia may be due to oxidative stress, and antioxidants may have protective role
- Thus it could be speculated that treatment with antioxidants may be helpful in preventing such ADRs due to theophylline
- The data of clinical and preclinical studies show that such translational approach could help to highlight some yet unexplored areas of safety pharmacology and toxicology
- The deliverable could be rationalization of drug therapy

# Acknowledgements

- Vallabhbhai Patel Chest Institute
- Department of Science and Technology, Govt of India
- Dr. Kavita Gulati
- Mr. Md. Shamsuzzaman
- Mr. Jagdish Joshi

