

NITRATE REMOVAL BY MODIFIED LIGNOCELLULOSE

M.Sc. (Tech.) Anni Keränen, Dr. Tiina Leiviskä, Prof. Osmo Hormi, Prof. Juha Tanskanen

University of Oulu, FINLAND

Anni Keränen, M.Sc. (Tech.)

A FEW WORDS ABOUT OULU

- located 500 km (310 miles) north of capital Helsinki
- 194 000 inhabitants
- University of Oulu
 - founded in 1958, 3rd largest in Finland
 - 16 000 students, 3 000 staff members
 - focus areas
 - biosciences and health
 - information technology
 - cultural identity and interaction
 - environment, natural resources and materials
 - arctic expertise
- Chemical Process Engineering research group

CONTENTS

NITRATE REMOVAL BY MODIFIED LIGNOCELLULOSE

- Hazards of nitrate pollution in waterways
- Nitrate removal methods
- Modified lignocellulose
- Results of sorption studies
 - synthetic solutions
 - industrial wastewaters
- Chemical resistance of resin
- Future plans

NITRATE POLLUTION

• sources: agriculture, sewage, explosives in mining

- problems:
 - > drinking water: formation of carcinogens, fatal to infants
 - > water systems: eutrophication
- removal methods
 - biological/chemical treatment
 - electrodialysis
 - > reverse osmosis
 - adsorption
 - > ion exchange

AIMS AND OBJECTIVES

- biobased platform for anion exchanger preparation (OH-groups)
- lignocellulose + chemical modification
 - → quaternary anion exchanger
- what's new: application of resins in industrial processes
 - 1. Chemical modification of lignocellulose
 - 2. Sorption studies on synthetic and industrial wastewaters
 - 3. Desorption and reuse
 - 4. Chemical resistance
 - 5. Disposal of used resin
 - 6. Development of modification method

CHEMICAL MODIFICATION

- pine sawdust, pine, spruce and birch bark and peat
- particle size 90-250 µm
- chemical modification enables anion sorption
 - > epichlorohydrin, triethylamine, ethylenediamine and N,N-dimethylformamide

Fig. 1. Schematic presentation of the synthesis of modified lignocellulose. Source: Xu et al., Carbohyd. Polym. 82 (2010), 1212—1218.

PREPARED RESINS

- 2 g of lignocellulose yielded 8—12 g of resin (mass increase 300—500%)
- increased porosity
 - > surface area increased about 1.7—4.9-fold
- nitrogen content increased from ~1% to ~9%
- positive surface charge
 - > quaternary ammonium groups

Fig. 2. FESEM micrographs of untreated pine sawdust (above) and quaternized pine sawdust (below) at 1000x magnification.

RESULTS

SYNTHETIC SOLUTIONS — NITRATE

- over 80% nitrate reductions from 30 mg N/l (typical in mining ww)
- maximum binding capacity 30 mg N/g (fig. 3)
- efficient sorption at pH 3—10 (fig. 4)

Fig. 3. Maximum nitrate binding capacity. Commercial anion exchange resin, Amberjet 4200 Cl, as a reference. Resin dose $4 \, g/l$.

Fig. 4. Effect of pH on nitrate sorption. Initially 30 mg N/l. Resin dose 3 g/l.

RESULTS

SYNTHETIC SOLUTIONS — NITRATE

- wide temperature range for mod. pine sawdust: 5-70°C
 - > applicable for both cold mining www and warm industrial www

Fig. 5. (a) Nitrate sorption capacity at 5-40 $^{\circ}$ C and (b) comparison of sorption capacities at 5-70 $^{\circ}$ C at 250 mg N/l. Resin dose 3 g/l.

RESULTS

OTHER ANIONS

- sulphate, phosphate
- anionic metals
 - vanadate
 - chromate
 - arsenate

Fig. 6. Effect of resin dosage on vanadium removal from industrial wastewater. Initially 50.4 mg V/l.

- high affinity for vanadium(V) (fig. 6)
- sorption capacities
 - > 130 mg V/g for synthetic solution
 - > 103 mg V/g for industrial wastewater (initial conc. 50.4 mg V/l)
- uptake of sulphate and phosphate

MINING WASTEWATERS

- ongoing sorption tests with mining wastewater
- batch tests
 - effects of dose, contact time and temperature
- column test series
 - 3 sorption-desorption cycles, maintenance cycle,
 3 sorption-desorption cycles, maintenance cycle,
 2 sorption-desorption cycles
- contaminants:
 - nitrate (9 mg N/l)
 - sulphate (8000 mg/l)
 - Sb, As, Ni, V, Cr, Zn,...
- sorption of cations?

Fig. 7. Column apparatus for tests on mining wastewater.

CHEMICAL RESISTANCE OF RESIN

- in real processes, ion exchange resins require maintenance
 - removal of accumulated impurities and foulants by acids or disinfectants
- modified pine sawdust exhibited good resistance towards acids

H₂SO₄

• some physical degradation with H₂O₂ was observed

FUTURE PLANS

- alternative modification method
 - less hazardous chemicals, cost-efficient process
- disposal of used resin

Publications

Keränen A., Leiviskä T., Gao B.-Y., Hormi O., & Tanskanen J. (2013). Preparation of novel anion exchangers from pine sawdust and bark, spruce bark, birch bark and peat for the removal of nitrate. Chem. Eng. Sci., 98, 59-68.

Keränen A., Leiviskä T., Hormi O., & Tanskanen J. (under review) Removal of nitrate by modified pine sawdust: Effects of temperature and co-existing anions.

Leiviskä T., Keränen A., Vainionpää N., Al Amir J., Hormi O. & Tanskanen J. (accepted) *Vanadium removal from aqueous solution and real wastewater using quaternized pine sawdust. IWA World Water Congress & Exhibition*, Lisbon, Portugal, September 21-26, 2014.

Funding: Maa- ja vesitekniikan tuki ry and the Maj and Tor Nessling Foundation

WATER RESEARCH IN THE CHEMICAL PROCESS ENGINEERING RESEARCH GROUP

- coagulation and flocculation (1), adsorption, ion exchange (2)
- total surface charge (3), zeta potential (4)
- dissolved air flotation (5)
- TOC, BOD, UV absorbancy

