

Potato sloughing and instrumental methods for its assessment

Anna Hejlová, Jiří Blahovec

Faculty of Engineering

Potato sloughing and instrumental methods for its assessment

- Cooked potato quality and texture profile
- Sensory methods for texture assessment
- CPM/CPW (cooked potato mass/weight) tests for sloughing assessment
- CPEM (cooked potato effective mass) method as modification of CPM tests
- CT (cooking time) and disintegration rate new sloughing parameters
- Sloughing

 in different varieties
 in different cultivation conditions
 in relation to tuber density and starch content

Cooked potato quality

Cooking/utilization types: A – Salad potato B – Fairly firm all-purpose C – Mealy D – Very mealy

Potato texture profile

Texture attributes:

- Mealiness
- Hardness/softness
- Sloughing
- Moisture/dryness
- Graininess/structure

Sensory methods for its evaluation:

- Visually when crushed with a fork, 1= non-mealy, 7= very mealy
- The force necesssary to cut the wedges with a fork, 1=firm, 7=soft
- Visually according to pictures, 1=remaining whole, 7=completely disintegrated
- Orally, 1=moist, 7=dry
- Orally, 1=fine, 7= coarse

Potato sloughing flaking and disintegration of the outer layers of potato tubers cooked in water

Sensory methods

visually according to pictures of cooked tubers 1 = remaining whole, 7 = completely disintegrated

Instrumental methods

determination of cooked potato tissue amount

 separating in water bath

• remaining on the cooked sample

Standard CPM/CPW test (cooked potato mass/weight) potato sloughing assessment

Potato sample cut from inner parenchyma 100 g, 10x10x1.5 mm Cooked and stirred decanted

CPM value recorded cooking curve: CPM ~ t

EAPR (European Association of Potato Research), Wageningen, 1977

CPM cooking curves

100 g – mass of the raw potato sample CT_{100} (characteristic time) – resistance against sloughing CPM cooking curve – result of 10-20 measurements

Modification: CPEM method

- Sample cooked and stirred on the sieve
- Cooked potato effective mass CPEM recorded continuously during cooking
- The whole cooking curve obtained in one test
- The sloughing can be studied in relation to tuber density

Sample preparation

3-4 tubers of the same flakes 10x10x1.5 mm size and density ρ (kg/m³)

estimated by double weighing in air (*m*) and in water (m_{uww}) $\rho = \rho_{water} m / (m - m_{uww})$ potato sample = 100 g

CPEM experimental set-up

1 – glass beaker (5l, dia 180 mm) with a round metal sieve 2x2 mm placed 5 mm above the beaker bottom

2 – polystyrene desk

3 – screen basket (dia 150 mm, height 190 mm, diamond mesh 3x5 mm, part of a pasta cooker)

4 – laboratory stand

5 – analytical balance SCALTEC
6 – immersion heater (≈ 1 kW)
7 – stirring apparatus with metal propeller (VEB Prüfgeräte-Werk, Dresden, 1967)
8 – metal propeller
9 – NTC thermistor
10 – digital multimeter
11 - stopwatch

Time schedule of the CPEM test

Calibration and final CPEM cooking curve

 transformed CPEM curve
 = initial screen effective mass SEM subtracted

change in SEM

final CPEM curve = change in SEM compensated

CPEM cooking curve and parameters

CT ... cooking time required to start disintegration (min) SBP ... disintegration rate (g/min)

Sloughing in different cultivars

CT (min)

CT ... cooking time required to start disintegration SBP ... disintegration rate

Different cultivation regimes

F Fertilization, W Irrigation

Fertilization ≈ lower degree of sloughing ... In significant influence on sloughing

CT ... cooking time required to start disintegration SBP ... disintegration rate

CPEM parameters in relation to tuber density

higher degree of sloughing ≈ higher tuber density

correlation between tuber density, dry matter and starch content

- Maercker's tables (1880)
- Scheele's formulas (1937)

CT ... cooking time required to start disintegration SBP ... disintegration rate

Linear model of cooking stage I

ρ_{MV} (kg.m⁻³)

- Density mean value of tested tubers
- Correlates closely with starch content

 $CT \sim CT_{MV} - b (\rho - \rho_{MV})$ R²... 0.5 - 0.92 $b (min.m^3.kg^{-1})$

- CT-sensitivity to tuber density and starch content
- Cooking parameter typical for variety, independent of growing conditions

CT_{MV} (min)

- Cooking time mean value
- Characteristic of potato variety

Why does the cooked potato tissue disintegrate?

- Biological plant material
- Parenchyma cells
- Disintegration = potato cell rupture and/or separation

Starch – starch swelling pressure due to gelatinisation, comparable with turgor pressure

Cell wall and middle lamella – degradation of pectic polymers

Linear model of cooking stage II

$ho_{ heta}$ (kg.m⁻³)

- Density of hypothetical potato tissue without starch
- Estimated as 1005 kg.m⁻³ (empirical formulas between density, dry matter and starch content - von Scheele)

 $CT \sim a_{CT0} - b (\rho - \rho_0)$ R² ... 0.5 - 0.92 b (min.m³.kg⁻¹)

- CT-sensitivity to tuber density and starch content
- Cooking parameter typical for variety, independent of growing conditions

а_{сто} (min)

- Time of cooking necessary to start disintegration of fictive potato tissue without starch
- Characteristic related to cell wall and middle lamella properties

Linear model of cooking stage III

 $CT \sim a_{CT0} - b (\rho - \rho_0)$

b (min.m³.kg⁻¹)

• CT-sensitivity to tuber density and starch content

а_{сто} (min)

- Time of cooking necessary to start disintegration of fictive potato tissue without starch
- Characteristic related to cell wall and middle lamella properties
- The most varieties followed a common inner mechanism of cell tissue disintegration
- Divergent behavior of salad cultivar Nicola was observed

Conclusions CPEM method

- objective instrumental method for potato sloughing assessment
- reduces experimental material and operational time
- potato cooking properties can be studied in detail in relation to tuber density
- CT cooking time main parameter
 - less than 6 min sloughed (type C)
 - 6 14 min moderately sloughed (type B)
 - more than 14 min slightly and non-sloughed (type A)
- improvement of experimental set-up possible

Publications

Hejlová A., Blahovec J., Vacek, J. (2006) **Modified test for potato sloughing assessment**. *Journal of Food Engineering* 77(3), 411-415.

Blahovec J., Hejlová A. (2006) Role of Tuber Density in Potato Sloughing. Journal of *Texture Studies* 37,165-178.

Hejlová A., Blahovec J. (2008) Sloughing in potatoes induced by tuber density and affected by variety. *Czech Journal of Food Sciences*, 26(1): 41-50.

Blahovec J. and Hejlova A. (2010). Simple Kinetic Models of Potato Sloughing, *International Journal of Food Properties*, 13(1): 51-64.

Hejlová, A. and Blahovec, J. (2010). **The Modified CPEM (Cooked Potato Effective Mass) Method: an Instrumental Assessment of Potato Sloughing**. *Czech Journal of Food Sciences*, 28(5): 407-411.

Current research:

Blahovec, J., Hejlová, A., Čopíková J. and Novák, M. (2011). **Tensile Properties of Microbial β-Glucan Films**. *Polymer Engineering and Science*, 51:2564-2570.

Hejlová A., Blahovec J. (2015). Stress Relaxation and Activation Volume in Tension in β-Glucan and Chitosan Films. *Polymer Engineering and Science*, 55 (3): 624-633.

Thank you for your attention