Chitosan-propolis nanoformulation for combating Enterococcus faecalis biofilms in vitro.

Fabian Davamani*, Ong Teik Hwa*, Ebenezer Chitra*, Srinivasan R*, Rajinikanth P*, Yuen Kah Key[#] and Stephen Ambu*.

*International Medical University, Kuala Lumpur 57000, Malaysia #University Sains Malaysia. Penang, Malaysia.

Propolis

- ✓ Brown resinous substance gathered by bees from various plants
- ✓ Antibacterial, antifungal, antiviral, antioxidant and anti-inflammatory activity
- $\checkmark The chemical composition of propolis is$
 - comprised of flavonoids, steroids, amino acids,
 - terpenes, phenolic and aromatic compounds

Components isolated from propolis

Flavinoids	Isolated for propolis ethanolic extract
Flavones	Chrysin , Apigenin, Luteolin
Flavonols	Rutin, Morin, Quercetin, Myricetin, Kaempferol, Quercitrin, Galangin
Flavanones	Naringin, Naringenin, Hesperetin
Isoflavones	Daidzein, Genistein

Chang CC, Yang MH, Wen HM, Chern JC. 2002. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis,(10) 3,178-182.)

Propolis extract preparation

Chitosan

✓ Biopolymer obtained from crustacean shells

- Possesses biocompatibility, biodegradability, nontoxicity and biological properties
- \checkmark Potential application in drug delivery system

INTERNATIONAL MEDICAL UNIVERSITY MALAYSIA

Chitosan application

New J. Chem., 2014, 38, 3181--3186

Chitosan propolis nanoformulation

HPLC analysis - standards

Identification of standard flavonoid markers compound (Retention time) Gradient method

Representative chromatogram of flavonoids at 260nm

Retention time and linearity - standards

	Detention time	Wavelength:	260nm
Compounds (Minutes)		Regression equation	Correlation coefficient (r ²)
Caffeic acid	4.6	y=24.086x + 0.0091	0.9975
Rutin	9.9	y=35.999x + 5.5071	0.9989
Quercetin	12.8	y=81.395x + 5.0073	0.9967
Cinnamic acid	13.3	y=50.948x + 5.7558	0.9989
Luteolin	14.1	y=45.031x + 2.3188	0.9989
Kaempferol	15.4	y=37.401x + 2.9118	0.9982
Apigenin	15.7	y=44.385x - 1.5019	0.9973
Pinocembrin	17.6	y=11.522x + 3.3704	0.9954

Chromatogram – propolis extract

Identify components in propolis

	Flavonoid content (ug/mL)		
Standard markers	Propolis ethanol extract	Propolis ethyl acetate extract	
Caffeic acid	NA	NA	
Rutin	NA	NA	
Quercetin	1.4348	1.392	
Cinnamic acid	NA	NA	
Luteolin	0.6052	0.5096	
Kaempferol	5.8832	5.616	
Apigenin	1.2224	1.12	
Pinocembrin	5.64	4.0612	

Out of 8 standard flavonoids compounds used, we are able to detect 5 of them in Malaysian propolis.

Identification of pinocembrin (Retention time) Isocratic method

Retention time and linearity

Compounds	Retention time (Minutes)	Wavelength: 260nm	
		Regression equation	Correlation coefficient (r ²)
Pinocembrin	7.6	y=9.7579x + 2.572	0.9989

Pinocembrin – used as marker compound

Chitosan propolis nano-formulation

Test the presence of markers for the formulation

Stability-Zeta potential, Size, Aggregation, No. of particles

Characterization of nanoparticles

Physical characterization nanoparticles

Formulation	Average particle	Polydispersity	Zeta	Encapsulation
	size	index	potential	efficiency
	(nm)	(PDI)	(mV)	(%)
Chitosan-TPP	125.7 ± 0.53	0.438 ± 0.01	35.5 ± 0.91	-
blank				
F1	247.1 ± 1.7	0.225 ± 0.013	45.2 ± 0.26	88.8
F2	427.1 ± 8.9	0.499 ± 0.012	64 ± 1.89	91.43
F3	512.3 ± 15.4	0.573 ± 0.07	74.1 ± 2.75	91.11
F4	198 ± 3	0.453 ± 0.012	48.2 ± 0.85	77.65
F5	308.3 ± 6.8	0.264 ± 0.001	49±1.37	88.17
F6	349.9 ± 2.3	0.371 ± 0.053	52.9 ± 3.5	88.2

Particle size and zeta potential of F1

Physical characterization nanoparticles

Factors that will

influence the

particle size

- Propolis loaded chitosan nanoparticle > Chitosan blank
- Chitosan concentration
- Propolis concentration
- Surfactant

PDI (POLYDISPERSITY INDEX)

Polydispersity index ranging from 0.225 to 0.573.

Physical characterization nanoparticles

- Chitosan-TPP nanoparticles are generally characterized by a positive zeta potential
- Positive zeta potential ranging from +35.5 mV to +74.1 mV.

Surface morphology of nanoparticles (SEM)

Nano particle - encapsulation efficiency

Encapsulation efficiency (%) =
$$\left(\frac{Amount of propolis added-free propolis}{Amount of propolis added}\right) x 100\%$$

Nano particle - encapsulation efficiency

Nano particle - encapsulation efficiency

In vitro release – encapsulation efficacy

In vitro release – encapsulation efficacy

- Pure propolis solution exhibited a burst release with $39.21\% \pm 3.67\%$ within the first hour and released up to $89.23\% \pm 4.52\%$ within 48 hours.
- Chitosan-propolis nanoparticles demonstrated a controlled and extended release profile up to 48 hours, with a total release of 53.78% $\pm 4.89\%$.

Enterococcus faecalis

- ✓Gram-positive cocci, normal intestinal flora of humans and animals
- \checkmark A major cause of nosocomial infections
- ✓ Capable of surviving harsh environments
- ✓ Urinary tract infection, nosocomial bacteremia and endocarditis
- ✓Biofilm formation

Enterococcus faecalis - drug resistance

Enterococci

From Commensals to Leading Causes of Drug Resistant Infection

Michael S Gilmore, Editor-in-chief Don B Clewell, Editor Yasuyoshi Ike, Editor Nathan Shankar, Editor

Massachusetts Eye and Ear Infirmary Boston

Last Updated: 2014 Feb 24

Clinical Updates in Infectious Diseases

Supported by an unrestricted educational grant from Glaxo Wellcome Inc

Volume IV, Issue 3 - April 1998

Enterococcal Resistance

Enterococci are gram-positive cocci that grow in chains in broth media and clinical specimens. They are indistinguishable microscopically from streptococci and were originally classified as group D streptococci under the old Lancefield classification. However, enterococci are genetically quite different from true streptococci and, for that reason, been classified as a separate genus (the genus enterococcus). This genus now contains more than a dozen species but only a relatively small number of these are important as human pathogens. A recent study of bloodstream isolates of enterococci in the United States (US) confirms that *E. faecalis* are still the most frequent cause of enterococcal infections in man, followed by *E. faecium* (Table 1). The data in Table 1 document a clear-cut decrease in the overall

Original Article

Detection of Vancomycin Resistance among *Enterococcus faecalis* and *Staphylococcus aureus*

Journal of Clinical and Diagnostic Research. 2016 Feb, Vol-10(2): DC04-DC06

DOI: 10.7860/JCDR/2016/17552.7201

Antibacterial efficacy of propolis against *E. faecalis*

Antibacterial efficacy of nano-propolis against *E. faecalis*

INTERNATIONAL MEDICAL UNIVERSITY MALAYSIA

Crystal violet assay

Crystal violet assay

• Quantification of static biofilm

Percentage reduction of viable bacteria in biofilms

	Propolis ethanol extract	Chitosan- propolis nanoparticles
50µg/ml	23.08%	22.73%
100µg/ml	47.31%	54.55%
125µg/ml	68.08%	68.18%
200µg/ml	79.23%	81.36%

Nano Propolis against E. faecalis biofilms

	Propolis ethanol extract	Chitosan - propolis nanoparticles
50µg/ml	26.92%	36.84%
100µg/ml	34.62%	47.37%
125µg/ml	42.31%	55.79%
$200 \mu g/ml$	53.85%	58.95%

Scanning Electron Microscopy

Control

Propolis

Dr. Fabian Davamani Principle investigator (Molecular and Microbiology)

Dr. Srinivasan Ramamurthy Co- investigator (Analytical Chemistry- Pharmacy)

Dr. Rajinikanth Siddalingam Co- investigator (Pharmaceutical Technology)

Dr. Ebenezer Chitra Co- investigator (Cell and Molecular biology)

Ong Teik Hwa Ph.D Student

