

Can Adv36 infection lead to overweight and obesity?

Schusterova, I^{1,2}, **Kiraly, J.**³, Artemiou P.²

Mentor: Assoc. Prof. Ingrid Schusterova, MD, PhD.

¹Department of Paediatrics and Adolescent, Faculty of Medicine, P.J.Šafárik University in Kosice, Slovakia ²Eastern Heart Institute, Kosice, Slovakia ³ Microbiology and Immunology, Veterinary University, Kosice, Slovakia

This research was supported by the Grant project of the Ministry of Education, science, research and sport of the SR Project title: "Origin and pathogenesis of obesity in relation to non-traditional obesity risk factors"

Obesity and UA

- In the second second
- I/3 of obese individuals never develop CV disease; and this group is called the <u>metabolically "healthy"</u> <u>obese</u>
- In the second second

Gustafsson D, Unwin R. BMC Nephrol. , 2013

Uric acid and metabolically "unhealthy" obesity Our results until now

pediatric**obesity**

ORIGINALRESEARCH

Epicardial adipose tissue and cardiometabolic risk factors in overweight and obese children and adolescents

I. Schusterova¹, F. H. H. Leenen², A. Jurko³, F. Sabol⁴ and J. Takacova⁵ ¹Childrens Faculty Hospital, Kosice, Slovakia; ²Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada; ³Pediatrics Cardiology Clinic, Martin, Slovakia; ⁴East Slovak Institute of Cardiovascular Disease, Kosice, Slovakia; ⁶The University Medicine and Pharmacy, Kosice, Slovakia

Received 3 April 2012; revised 30 October 2012; accepted 27 November 2012

We were the first EAT thickness in children is associated with an unfavorable cardiometabolic risk profile including biochemical signs of NAFLD and hyperuricaemia, but is not a stronger indicator than BMI.

Collin Bryant

india departments

Abdominal

Raft Factors, Weight Reduction Methods and Long-Term

Health Effects

besity

In our study UA levels positively correlated with LV diastolic volumes, SV in obese children. It seems that LV volume overload can be influenced by hyperuricemia in presence of obesity.

UNIVERSITY OF OTTAWA HEART INSTITUTE INSTITUT DE CARDIOLOGIE DE L'UNIVERSITÉ D'OTTAWA

Schusterova, I. : Cardiomyopathy associated with obesity: Obesity Cardiomyopathy, In Abdominal Obesity, Risk factors, Weight Reduction and Long- Term Health Effects., *New York : Nova Science Publishers*, Inc., 2015. ISBN 9781634839501.

Is Obesity an infectious disease?

First animal study (Dhurandhar, 2000)

International Journal of Obesity (2000) 24, 989–996 © 2000 Macmillan Publishers Ltd All rights reserved 0307–0565/00 \$15.00

M

www.nature.com/ijo

Increased adiposity in animals due to a human virus

NV Dhurandhar^{1*}, BA Israel², JM Kolesar³, GF Mayhew⁴, ME Cook⁵ and RL Atkinson⁶

¹Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA; ²Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, USA; ³School of Pharmacy, University of Wisconsin, Madison, WI, USA; ⁴Department of Genetics, University of Wisconsin, Madison, WI, USA; ⁵Department of Poultry Science, University of Wisconsin, Madison, WI, USA; and ⁶Depart

Animals model: chicken and a mammal

<u>Results:</u> Animals inoculated with Adv36 developed a syndrome of increased adipose tissue and paradoxically low levels of serum cholesterol and triglycerides

First human study (Atkinson, 2005)

International Journal of Obesity (2005) 29, 281-286 © 2005 Nature Publishing Group All rights reserved 0307-0565/05 \$30.00 www.nature.com/iio

2016

Cooperation

npg

PAPER

Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids

RL Atkinson¹*, NV Dhurandhar², DB Allison³, RL Bowen⁴, BA Israel⁵, JB Albu³ and AS Augustus⁶

Results: Adv36 is associated with increased body weight and lower serum lipids in humans. Prospective studies are indicated to determine if Adv36 plays a role in the etiology of human obesity

Association between obesity and Adv36

Czech Republic (Aldhoon-Hainerova et al, 2014) Korea (Na et al, 2010) Mexico (Rojas et al, 2013) Turkey (Cakmakliogulari et al, 2014)

X

Netherlands and Belgium (Goossens et al, 2011)

USA (Broderick, 2010) Italy (Trovato, 2010) Finnland (Sabin, 2015) South Korea (Na, 2012)

??? Slovakia

Two meta-analyses

Tomohide et al, 2012

- 10 case-control studies
- Adv36 infection associates with the risk of obesity, but not with abnormal metabolic markers

Shang et al., 2014

- 11 case-control studies,
- 2508 obese subjects and 3005 controls
- Identified an association between Ad36 infection and a significantly increased risk of obesity development, especially in children

Presentation of study results

The aim of this study

To assess the relationship between Adv36 seropositivity and the risk of development of obesity and hyperuricemia in children and adolescents

Methods

224 randomly selected students (17.72±1.20 years of age, 120 female) from 7 high-schools in Kosice were included in the study. Subjects with secondary causes of obesity were excluded and none were taking medications or had a history of cardiovascular disease.

In 224 healthy students, <u>anthropometric</u> <u>parameters, fasting plasma glucose and</u> <u>insulin, lipids, uric acid, adipose tissue</u> <u>hormones were measured</u>. Adv36 antibody was detected by ELISA test.

Biochemical characteristics of overweight/obese and lean control study groups

Antropometric and biochemical parameters	Normal weight Mean ± SD N=171	Obese and overweight Mean ± SD N=53	p- value
Age (years)	17.74 ± 1.16	17.67 ± 1.34	0.73
Body weight (kg)	61.84 ± 9.59	85.16 ± 16.33	<0.0001
Body height (cm)	172.64 ± 9.99	173.55 ± 10.33	0.56
WHR	0.79 ± 0.06	0.89 ± 0.07	<0.0001
Body fat mass (kg)	11.09 ± 4.45	24.70 ± 10.89	<0.0001
Body muscle mass (kg)	26.98 ± 6.41	33.69 ± 7.35	<0.01
Body fat percentile (%)	19.00 ± 7.51	29.00 ± 10.59	<0.01
Visceral fat mass (cm²)	62.83 ± 60.65	167.36 ± 144.67	<0.0001
Basal metabolic rate (kcal)	1420.82 ± 231.26	1659.92 ± 262.11	<0.01

WHR: Waist to Hip Ratio

Anthropometric characteristics of overweight/obese and lean control study groups

Antropometric and biochemical parameters	Normal weight Mean ± SD N=171	Obese and overweight Mean ± SD N=53	p- value
Glucose (mmol L ⁻¹)	4.47 ± 0.57	4.75 ± 0.74	<0.05
Uric acid (umol L ^{.1})	292.23 ± 59.86	341.62 ± 70.72	<0.0001
AST (ukat L ⁻¹)	0.41 ± 0.27	0.43 ± 0.18	0.74*
ALT (ukat L ^{.1})	0.35 ± 0.21	0.43 ± 0.26	<0.01
Total cholesterol (mmol L ⁻¹)	4.11 ± 0.68	4.14 ± 0.70	0.82
TAG (mmol L ⁻¹)	0.88 ± 0.46	1.07 ± 0.67	<0.01
HDL cholesterol (mmol L ⁻¹)	1.56 ± 0.31	1.33 ± 0.27	<0.0001
LDL cholesterol (mmol L ⁻¹)	2.35 ± 0.50	2.49 ± 0.58	0.08
hsCRP (mg L ^{.1})	0.79 ± 0.80	1.63 ± 1.59	<0.0001
Inzulin (uIU/ml)	10.44 ± 10.01	16.39 ± 16.83	<0.001
Adiponectin (ng/ml)	9.49 ±5.05	6.91 ± 3.11	<0.001
Rezistin (ng/ml)	7.74 ±3.92	8.27 ± 3.80	0.29*
Leptin (ng/ml)	5.80 ± 6.20	15.94 ± 16.66	<0.0001
Ghrelin (pg/ml)	910.38 ± 267.48	861.22 ± 310.72	<0.05
HOMA-index	2.13 ± 2.35	3.77 ± 4.79	<0.001

HOMA index: homeostasis model assessment of insulin resistance, AST: aspartate aminotransferase, ALT: alanine aminotransferase, TAG: triacylglyceride, HDL: high-density lipoprotein, LDL: low-density lipoprotein, hsCRP: high-sensitivity C-reactive protein

Anthropometric characteristics of Adv36 negative/ Adv36 positive study groups

Anthropometric parameters	Adv36 negative Mean ± SD N= 164	Adv36 positive Mean ± SD N= 60	p-value
Age (years)	17.62 ± 1.27	18.010 ± 0.94	0.06
Body weight (kg)	66.88 ± 16.21	68.67 ± 12.01	0.12
Body height (cm)	171.95 ± 10.16	175.33 ± 9.32	<0.05
BMI	22.47 ± 4.39	22.23 ± 3.12	0.87
BMI percentil	53.55 ± 32.48	51.91 ± 29.92	0.73
WHR	0.82 ± 0.08	0.80 ± 0.08	0.24
Body fat mass (kg)	15.66 ± 10.45	15.09 ± 6.24	0.87
Body musle mass (kg)	28.24 ± 6.92	32.23 ± 8.33	0.13
Body fat percentile (%)	22.58 ± 10.08	21.16 ± 8.91	0.68

BMI: Body Mass Index, WHR: Waist to Hip Ratio

Biochemical characteristics of Adv36 negative/ Adv36 positive study groups

Biochemical parameters	Ad36 negative Mean ± SD N= 164	Ad36 positive Mean ± SD N= 60	p-value
Glucose (mmol L ⁻¹)	4.55 ± 0.63	4.48 ± 0.60	0.48
Uric acid (umol L ⁻¹)		???	
AST (ukat L ⁻¹)	0.42 ± 0.28	0,39 ± 0.12	0.94
ALT (ukat L ^{.1})	0.37 ± 0.25	0.35 ± 0.13	0.55
Total cholesterol (mmol L ⁻¹)	4.15 ± 0.66	4.03 ± 0.74	0.23
TAG (mmol L ⁻¹)	0.95 ± 0.54	0.85 ± 0.45	0.19
HDL cholesterol (mmol L ⁻¹)	1.50 ± 0.32	1.51 ± 0.28	0.95
LDL cholesterol (mmol L ⁻¹)	2.39 ± 0.51	2.36 ± 0.55	0.72
hsCRP (mg L ^{.1})	1.074 ± 1.20	0.78 ± 0.74	0.23
Inzulin (ulU/ml)	12.61 ± 13.32	9.86 ± 8.34	0.16
HOMA-index	2.69 ± 3.45	2.08 ± 2.27	0.22

HOMA index: homeostasis model assessment of insulin resistance, AST: aspartate aminotransferase, ALT: alanine aminotransferase, TAG: triacylglyceride, HDL: high-density lipoprotein, LDL: low-density lipoprotein, hsCRP: high-sensitivity C-reactive protein

Adv36 infection and UA

First study focusing on the assessment of the relation of Adv36 infection and hyperuricemia

	Multiple regression analyses			
	dependent variable: UA			
N=224	beta	В	t (221)	p-value
		154.12	6.81	<0.0001
BMI	0.39	6.42	6.52	<0.0001
Ad36	0.14	21.89	2.41	<0.05
UA=6,42*BMI + 21,9*Adenovirus + 154,12				

Biochemical parameters	Ad36 negative Mean ± SD N= 164	Ad36 positive Mean ± SD N= 60	p-value
Uric acid (UA) (umol L ⁻¹)	298.45 ± 63.05	318.79 ± 71.51	<0.05

We confirmed the association between the elevated UA levels and Adv36 seropositivity in adolescents

Influence of Adv36 on body weight

Adv36 seropositivity was associated with higher body weight in normal weight students

Influence of Adv36 on serum leptin level

Differences between Ad36 positive normal weight and obese and overweight high-school students in serum leptin levels (p=0.27, U=229.00) It seems that Adv36 infection is associated with leptin secretion independently of the presence of obesity in adolescents

Differences between Adv36 negative and Ad36 positive obese and overweight high-school students in serum leptin levels (p<0.01, U=122.50)

Prevalence of Adv36 infection in study groups

Deference between Ad36 negative and Ad36 positive normal weight high-school students *in serum Insulin levels p*<0.07, *U*=2051.00

Differences between high-school students with and without IR in prevalence of Adv36 positivity (chí-kv: 0.66, p=0.41)

Adv36 adipogenic adenovirus effect on body composition is not operating through an insulin-resistance-related mechanism

Our study suggest possible direct influence of Adv36 infection on development or progression of unhealthy obesity and CV risk

The study demonstrates a relationship between Adv36 infection and the risk of development of obesity in normal weight children and adolescents

> We did not find higher prevalence of Adv36 seropositivity in obese adolescents

Virulence factors of adenovirus could be changed during the time ??? ...

Other bacterias / viruses??? ...

Further studies are required to elucidate this biological mechanism of such complex relationship

