Non-Thermal Processing Technologies to Inactivate Foodborne Viruses

Alvin Lee, Ph.D.
Center Director / Associate Professor
Center for Processing Innovation
Institute for Food Safety and Health

Food Processing and Technology
Las Vegas, USA
July 2014
Norovirus

- Transmission via human feces and vomit — 30 million virions shed in one vomiting episode
- Infectious dose very low — 2-100 virions
- Incubation period 24-40 hours
- Symptoms: Nausea, vomiting, diarrhea, cramps, occasional headache and low-grade fever
- Duration: 1-2 days
Annual Burden of Norovirus Disease in the United States

- 800 Deaths
- 71,000 Hospitalizations
- 414,000 Emergency Dept Visits
- 1.7 million Outpatient Visits
- 21 million Episodes

Hall 2012 CID; Lopman 2011 CID; Gastañaduy 2012 EIS; Hall 2011 EID; Scallan 2011 EID
Foods Implicated* in Norovirus Outbreaks Reported to CDC by Commodity and Point of Contamination, 2001-2008

*Limited to outbreaks with a simple food (consisting of a single commodity) implicated.

**Insufficient or conflicting information provided in outbreak report.

Hall 2011 IAFP
Intervention/Mitigation Strategies

- Depuration and Relaying
- High Powered Ultrasound
- High Pressure Processing
- Thermal/Heat – Cooking and Pasteurization
- Non-thermal Plasma
- Irradiation
- Freezing
- Drying
- Pulsed Light including UV
- Shockwaves
High Pressure Processing (HPP)

24 L High Pressure Sterilization Unit
Max: 890 MPa @ 131°C
High Pressure Processing for Food Applications

200 elephants weighing 3000 kg each standing on a piston with a diameter of a CD, create a pressure of 600 MPa, 6000 bar or 90,000 psi.
Schematic diagram of a HPP system

Data acquisition computer

Sample holder containing pre-packaged food

Pressure-transmitting fluid

High pressure intensifier/pump

Top closure

Pressure chamber

Temperature control jacket

Bottom closure

Sample holder containing pre-packaged food

Pressure-transmitting fluid

High pressure intensifier/pump

Top closure

Pressure chamber

Temperature control jacket

Bottom closure
Distribution of study subject infection status among oyster treatment groups in a HPP challenge study

<table>
<thead>
<tr>
<th>Phase</th>
<th>Treatment conditions</th>
<th>No. of subjects infected/total (%) postchallenge with:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HPP-treated oysters</td>
<td>Untreated oysters<sup>a</sup></td>
</tr>
<tr>
<td>1</td>
<td>400 MPa, 25°C, 5 min</td>
<td>3/5 (60)</td>
<td>7/15 (47)</td>
</tr>
<tr>
<td>2</td>
<td>600 MPa, 6°C, 5 min</td>
<td>0/10 (0)</td>
<td>7/15 (47)</td>
</tr>
<tr>
<td>3</td>
<td>400 MPa, 6°C, 5 min</td>
<td>3/14 (21)</td>
<td>7/15 (47)</td>
</tr>
</tbody>
</table>

Leon et al., 2011, AEM (77) 5476-5482
High Pressure Processing and Viruses

Grove et al., 2008

Poliovirus

Feline Calicivirus

Hepatitis A
HPP and Hepatitis A in various salt

300, 400 & 500 MPa in 15 & 30 ppt salt

FIGURE 1. Survival curves of hepatitis A virus (HAV) after high pressure treatment with 300 (×), 400 (□), and 500 (♦) MPa at room temperature in buffered medium containing salt at (a) 15 g/liter and (b) 30 g/liter. Each data point is the average log S value of triplicate quantitative assays for duplicate or triplicate samples. No infectious HAV was detected (<1.47 log TCID₅₀/ml) after 500 MPa treatment for 300 s in medium with 15 g/liter salt or for 360 s in 30 g/liter salt. Modified from Grove et al. (15).

Grove et al., 2009
MNV-1 inactivation by HPP in various food matrices

Lou et al., 2011, AEM 77(1862-1871)

More at IAFP 2014, Indianapolis
High Power Ultrasound
High-Power Ultrasound

Ultrasonic waves form bubbles via expansion and contraction
- Termed ‘Cavitation’

- Temperature 5000 k (4700°C)
- Pressure 2000 atm (30,000 PSI)
- Frequency ~20 kHz

Acoustic

Human hearing

20 kHz

Low & High Power Ultrasound

Industrial & agricultural cleaning

100 kHz

Medical uses

1 MHz

High Frequency Ultrasound
High Power Ultrasonic Transducer and Sonotrode
HPU and Produce Washing
Chlorine with High Power Ultrasound on Murine Norovirus (MNV-1)

Liu, Grove and Lee, 2009
Sanitizers – POAA on MNV-1

Log reduction of MNV-1 washed from the surface of inoculated romaine lettuce leaves after treatment with peroxycetic acid (POAA) alone or with additional high power ultrasound (HPU) at (a) 4°C or (b) 10°C.

Liu, Grove and Lee, 2009
Pulsed Light

Pulsed light is a food processing method that involves the use of intense and short duration pulses of a broad spectrum.

Xenon Steripulse XL-3000TM pulsed light system
1.27J/cm², 3 pulses/second
• Broad spectrum (100-1000nm) includes 54%, 26% and 20% of the energy at UV light, visible, and infrared region, respectively.

• Inactivation of pathogenic and spoilage microorganisms on foods and packages (surface)
MNV-1 Transfer during Chopping

Polyethylene Board

Knife

Y = -0.325X + 5.5904
r² = 0.7715

Y = -0.4717X + 7.4067
r² = 0.8625
Pulsed Light on Stainless Steel

MNV-1 Inactivation and Temperature on Stainless Steel at Distance of 10.8 cm

- Log Reduction
- Surface Temperature

R² = 0.979

Description: RD128-304 304 stainless steel coupons
Pulsed Light on Glazed Tile

MNV-1 Inactivation and Temperature on Tile Surface at Distance of 10.8 cm

Log Reduction vs. Treatment Time (s)

Surface Temperature (°C)

R² = 0.990
Pulsed Light on Plastic

MNV-1 Inactivation and Temperature on Polypropylene Surface (10.8cm)

MNV-1 Inactivation and Temperature on Polyethylene Surface (10.8cm)
Acknowledgements

IFSH Food Virology Research Group
Stephen Grove (now with Nestle PTC Solon)
Carol Shieh
Mary Lou Tortorello
Diane Stewart
David Laird
Kathiravan Krishnamurthy
Zijin Zhou (MS candidate)
Sagar Agarwal (MS candidate)
Jin Zeng (MS candidate)

NoroCORE financially supported by USDA NIFA 2011-68003-30395
Thank you & Questions