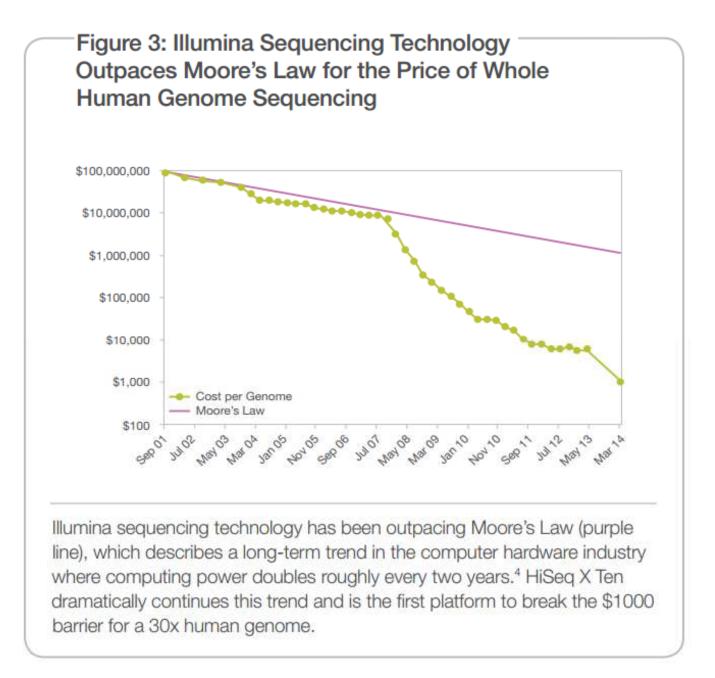
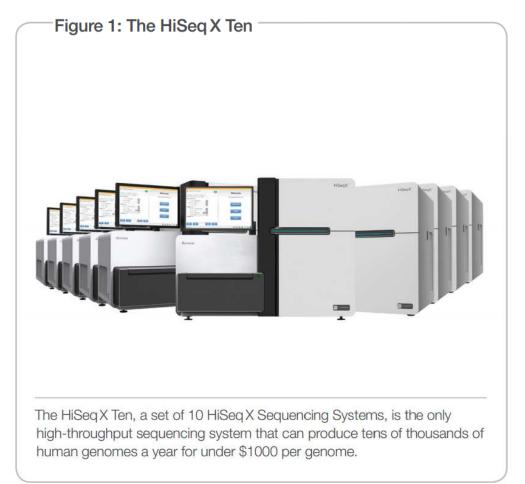
Organization and analysis of NGS variations.

Alireza Hadj Khodabakhshi

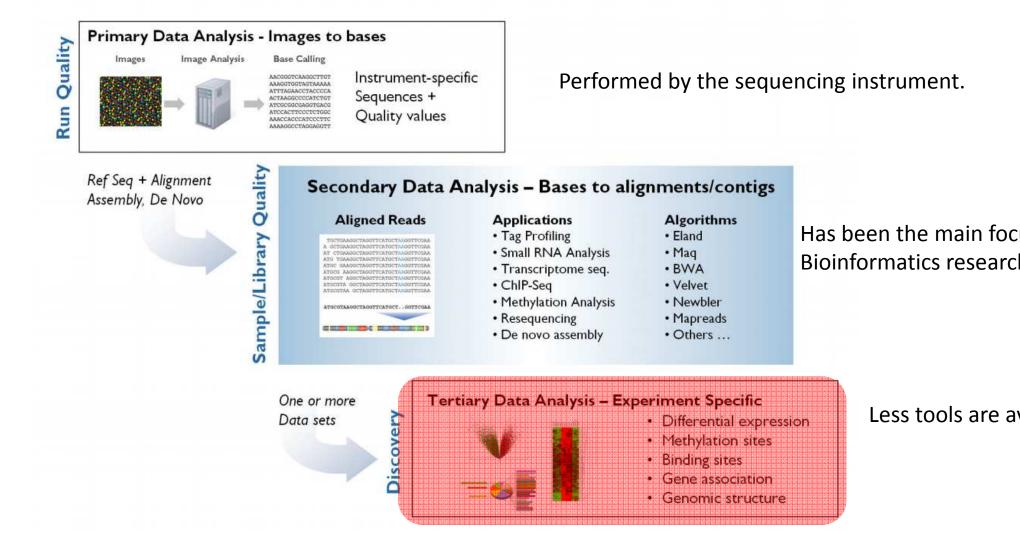

Research Investigator

Genomics Institute of the Novartis Research Foundation


Why is the NGS data processing a big challenge?

Computation cannot keep up with the Biology.

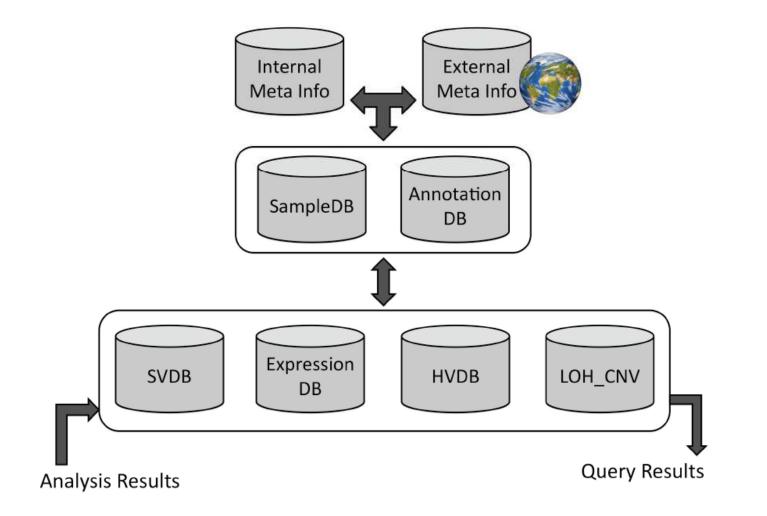
1000 human gnome


- 50 whole genome per day
- 5 tera bytes (only mapped reads) per day

Source: illumina

achine details 5 cores @ 2.7GHz, 64 GB RAM, and 6 TB HDD						
Sample details DNA reads of a human (NA12878) sample Size of the fastq.gz files: 92 GB; #reads: 1.16 billion paired-end reads Read length: 150bp						
Task	Time Taken					
Alignment of DNA reads	7 hr 16 min (~10 million reads /hour/core)					
Import of the aligned reads (includes computation of QC statistics)	6 hr 23 min					
Import of the aligned reads (includes computation of QC statistics) Local realignment (includes recomputation of QC statistics)	6 hr 23 min 7hr 30 min					
Local realignment (includes recomputation of QC statistics)						
	7hr 30 min					

Bioinformatics of NGS data



eneSifter: Next Generation Data Management and Analysis for Next Generation Sequencing. tp://www.geospiza.com/

Organizing the variation data.

- Scalable.
- Enable insightful queries in a timely manner.
- Support various NGS data (variations, expressions, annotations,...).

A consortium of databases for genomic discovery.

Sample Database(SampleDB):

clinical and experimental information of the samples (type of disease, pathology, age, sex,...).

Annotation Database(AnnotationDB):

annotations of genomic regions (sources: UCSC, Ensembl,....)

Structural Variation Database(SVDB):

genomic structural variations (translocations, inversions, large indels).

Expression Database (ExpressionDB):

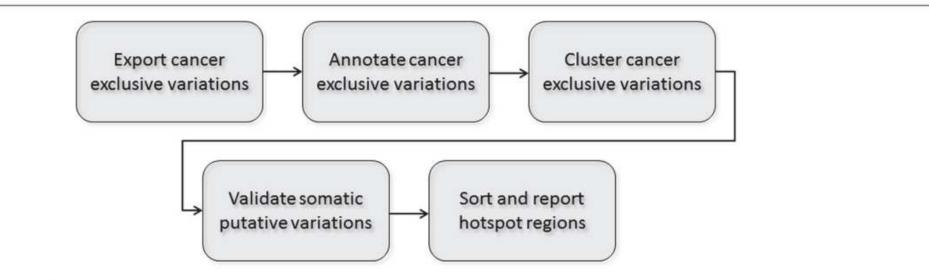
expression levels of genomic regions (RPKM values).

Human Variation Database (HVDB):

small genomic variants (SNP, small indels)

Loss of Heterozygosity & Copy Number Variation (LOH_CNV)

-Juman Variation Database (HVDB)


- Starting point of the consortium.
- Stores SNPs and small indels.
- Contains more than 4 billion variations across over 6000 samples.
- Implemented with PostgreSQL and Java.
- Its template and APIs are publically available.

Analyzing the data

- Mutated pathways in types of cancer.
- Variation hotspots.
- Correlation between various variation types (eg. correlation between SNVs and genomic translocations).
- Correlation between variations and expressions.

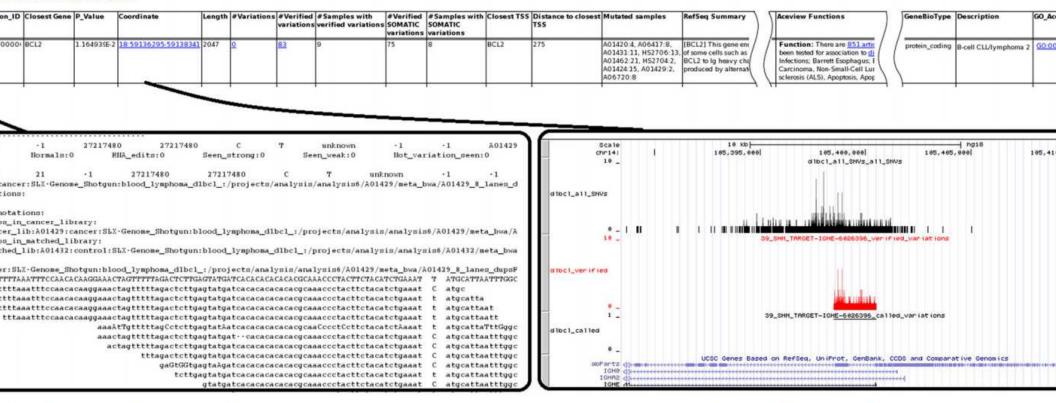
Autation analysis pipeline:

- A high throughput pipeline on top of the genomic database consortium.
- Current version identifies statistically significant mutational hotspots.

ure 1 Validation report. The major phases of the MuteProc mutation analysis pipeline.

Validating the variations

- Through the analysis of mapped read (raw data) at the variation site.
- Calculates the confidence based the ratio of good reads that support the variation.
- Uses the mapped read of the matched normal if available.
- The process is performed on a computing cluster in a parallel way


ment report.

nent/NBL03/HS1782/31_la	nes	.rmdup.bam cov:25 var:0 good_cov:19 good_var:0 map_qual:0 base_qual:0	
CACACAGTCTGTATGGCTGTCC	Α	TAGCCACTCAATCAGGATGTGATCACTTTGCCCTTGTGCCAACTGCTTGTTCACCTGCAACCACTGACAGAGGGAGG	
cacacagtetgtatggetgtee	а	tage	60
cacacagtetgtatggetgtee	а	tagccac	60
cacacagtetgtatggetgtee	а	tagccactc	60
cacacagtetgtatggetgtee	a	tagccactca	60
cacacagtetgtatggetgtee.	C	tGgccactcaatcC	29
cacacagtetgtatggetgtee	а	tagecaete	29
cacacagtetgtatggetgtee	а	tagccactcaatcagga	60
cacacagtetgtatggetgtee	а	tagccactcaatcagga	60
cacacagtetgtatggetgtee	а	tagccactcaatcagga	60
cacacagtetgtatggetgtee	а	tagccacCcaatcaggaAg	29
cacacagtctgtatggcGgtcc	а	tagccactcaatcaggatgtga	60
cacacagtctgtatggctgtcc	а	tagccactcaatcaggatgtgatca	60
cacacagtctgtatggctgtcc	а	tagccactcaaAcaggatgtgatcact	60
cacacagtctgtatggctgtcc	а	tagccactcaatcaggatgtgatcact	29
cacacagtctgtatggctgtcc	а	Nagccactcaatcaggatgtgatcactttgcccttgtgc	60
cacacagtetgtatggetgtee	а	tagccactcaatcaggatgtgatcactttgcccttgtgccaa	60
cacacagtetgtatTgetgtee	а	tagccactcaatcaggatgtgatcactttgccACtgtgcTaa	60
cacacagtctgtatggctgtAc	а	tagccactcaatcaggatgtgatcactttgcccttgtgccaa	60
cacacagtctgtatggctgtcc	а	tagccactcaatcaggatgtgatcactttgcccttgtgccaactgct	29
cacacagtctgtatggctgtcc	а	tagccactcaatcaggatgtgatcactttgcccttgtgccaactgctt	60
CCacagtetgtatggetgtee	а	tagccactcaatcaggatgtgatcactttgcccttgtgccaactgcttgttc	60
cacagtctgtatggctgtcc	а	tagccactcaatcaggatgtgatcactttgcccttgtgccaactgcttgttcac	60
atggctgtcc	а	tagccactcaatcaggatgtgatcactttgcccttgtgccaactgcttgttcacctgcaaccac	60
tcc	а	tagccactcaatcaggatgCgatcactttgcccttgtgccaactgcttgttcacctgTTaccactgacaga	60
	а	tagccactcaatcaggatgtgatcactttgcccttgtgccaactgcttgttcacctgcaaccactgacagaggg	60

rack

ions track

riations in target regions

3 Final report. A snap shot of the final report generated by the pipeline. The links in the "rank" column point to the variation QC represending region. The three links on the top of the report, that is "All SNVs track", "Target regions track" and "Verified Variations in tail", uploads the variation locations as custom tracks in the UCSC genome browser. Once these tracks are uploaded, clicking on the link nate" column browse to the associated region in the UCSC genome browser where the variations are visible in the loaded variation to the series of the report.

Performance

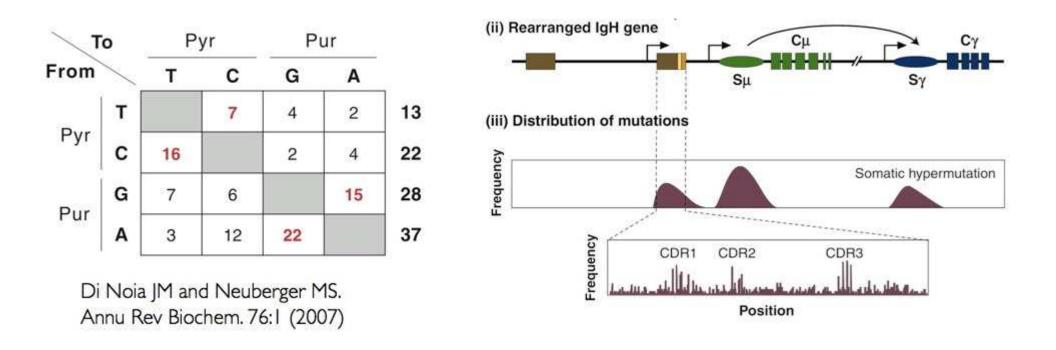
ata size:

- 2.5 billion variations
- ~2000 cancer samples.
- ~2000 normal samples.

latform:

- Linux Centos
- PostgreSQL database.
- Java APIs.
- Database server: eight core Xeon ® 3.00 GHz, 64 GB memory
- Application machine: 4 core, 8 GB memory

he pipeline run completes in about 23 hours.


Analysis of 40 DLBCL genomes.

- **Goal:** Identify mutational hotspots in DLBCL genome.
- **Cohort:** 40 whole genome DLBCL samples and their matched normal amples.
- **Conclusion:** Small regions in the promoter of certain genes harbor an extraordinary amount of somatic mutations.
- *These regions undergo somatic hypermutation.*

Somatic HyperMutation (SHM)

- Naturally occurs in B-Cell development to generate diverse antibodies.
- It occurs in variable region of immunoglobulin genes.
- <u>10⁵-10⁶</u> fold greater than the normal rate of mutation across the genome.
- Mutations are mostly single base substitution (insertion and deletions are less common).

SHM Characteristics

SHM has a tendency toward certain motifs in DNA sequence, most significantly **WRCY** (where W denotes A or T; R denotes A or G; and Y denotes C or T) or its reverse complement **RGYW**

- SHM can aberrantly target proto-oncogenes (BCL6, PIM1, MYC, RHOH, PAX5) and tumor suppressors (CD95).
- Such mistargeting of SHM (aSHM) contributes to the development of diffuse large B-ell lymphomas.
- SHM also has a driving role in chromosomal translocations in B-cell lymphomas.
- In the past decade twelve genes had been identified to have aSHM.
- In addition to these genes our analysis identifies many more.

Are these novel genes really targeted by aSHM?

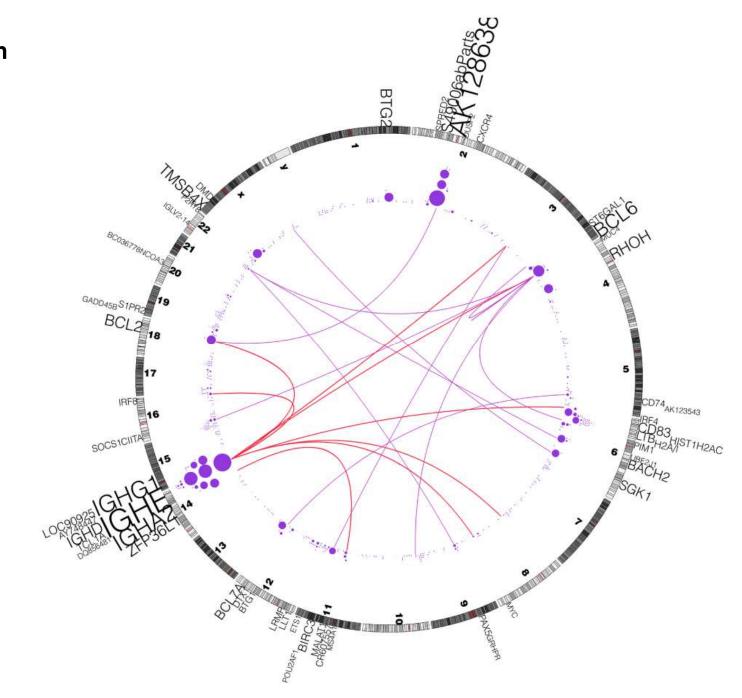
Do they show characteristics of SHM?

- More Transition than Transversion SNVs.
- Tendency toward WRCY/RGYW motif.
- More C:G mutations than A:T
- A bell shape mutation distribution around TSS.

Ve studied these characteristics for the genes that had similar or higher mutation ate than those known to be aSHM targets **(44 genes).**

Gene names	SHM indicator	Total SNVs	Mutated Samples	Transition/ Transvertion (Pvalue)	Motif Bias (P-values)	C:G over A:T (P-value)	RPKM fold change between mutated vs. unmutated samples	Average RPKM in Tumor	Avearge RPKM Normal Bcell
BCL6*	0.1389	179	27	1.27(0.06)	1.41(0.0919)	0.77(0.5)	0.55739	61.4600	160.93086
BCL2*	0.2642	146	11	0.8(0.5)	1.47(0.0738)	0.79(0.5)	1.29298	20.7300	2.59639
BTG2	0.0123	55	18	1.04(0.45)	2.78(0.0002)	1.05(0.0172)	-0.27272	149.6800	223.5928
TMSB4X	0.0201	52	17	0.79(0.5)	1.69(0.1114)	1.41(0.0001)	0.11158	1485.8800	1017.2736
ZFP36L1	0.0000	52	16	1.17(0.29)	4.18(0)	1.26(0.0009)	0.05879	50.4900	142.76265
RHOH*	0.0509	42	17	0.68(0.5)	2.91(0.0005)	0.81(0.5)	0.01346	76.7300	352.06877
SERPINA9	0.1296	36	7	0.57(0.5)	2.15(0.0345)	1.03(0.1261)	5.48905	277.4700	237.10067
CD83	0.0006	34	8	1.13(0.37)	3.49(0.0001)	1.67(0)	1.08042	162.1900	478.47502
SGK1	0.0000	34	5	0.62(0.5)	5.5(0)	1.37(0.0103)	0.1586	2.9000	4.48411
BCL7A*	0.0083	32	14	1.46(0.14)	4.29(0)	0.9(0.5)	0.73039	31.1700	96.05465
BACH2	0.5000	30	8	0.25(0.5)	0.67(0.5)	0.75(0.5)	0.30362	8.0700	52.5643
LTB	0.0794	23	10	1.3(0.27)	2.72(0.0156)	1.15(0.1208)	1.81466	142.6400	189.28412
BIRC3	0.1158	21	12	1.1(0.41)	2.03(0.0975)	1.4(0.0385)	-0.10012	80.9500	175.95683
HIST1H2AC	0.0009	19	9	1.71(0.13)	4.95(0)	1.47(0.0123)	0	0.2000	0.08058
TCL1A	0.2012	17	8	0.55(0.5)	1.03(0.4869)	1.48(0.0335)	-0.07685	248.7300	709.73845
ST6GAL1*	0.2318	15	8	0.88(0.5)	2.17(0.1233)	1.03(0.202)	0.23782	64.4800	149.40245
CD74	0.0032	14	8	0.56(0.5)	5.18(0)	1.7(0.0061)	0.44198	10559.9000	8227.8865
SOCS1*	0.0272	14	5	1.33(0.3)	3.3(0.0117)	1.38(0.0058)	0.16955	26.1800	39.5316
IRF8	0.2448	13	9	1.6(0.2)	1.19(0.4275)	1.14(0.1694)	-0.0691	174.1000	462.84745
BTG1	0.0683	13	9	1.17(0.39)	3.55(0.0076)	1.22(0.1065)	0.12187	191.6600	975.71198
CR607557	0.0008	13	9	1.6(0.2)	6.69(0)	1.11(0.2004)	0	0.0000	0
LRMP*	0.2823	13	7	0.63(0.5)	1.08(0.4667)	1.48(0.0965)	0.22716	149.9900	276.99144
IRF4*	0.0208	13	4	5.5(0.01)	2.63(0.0714)	1.28(0.0201)	1.82701	106.0800	29.07161
CIITA*	0.0003	12	9	1(0.5)	6.29(0)	1.78(0.001)	0.49221	25.6600	23.75111
DTX1	0.0294	12	8	3(0.04)	3.71(0.0059)	1.26(0.1041)	0.42032	87.7300	151.20776
CXCR4	0.0025	12	7	0.71(0.5)	5.9(0)	1.68(0.002)	0.42432	143.9600	968.41417
PIM1*	0.0146	12	7	1(0.5)	4.6(0.0003)	1.47(0.0255)	0.96916	84.0200	165.35743
S1PR2	0.0183	11	7	1.75(0.18)	5.25(0.0005)	1.19(0.0689)	0.59678	22.3300	96.04705

Oncotarge 3: 1308-13 All known targets of aSHM (12 genes) are in the list and 75% of them have a significant aSHM indicator (a good control for our analysis).


More than 81 and 90 percent of the SHM-targets showed a bias for SHM criteria "*Motif enriched*" and "*C:G vs A:T mutation bias*".

If these gene are enriched with aSHM mutations, a random mutated gene should have a significantly less aSHM indicator value.

Table 2: Average SHM feature values per group. The average feature values in each group of SHM-targets. The last row contains the IG loci. Groups I, II and III are divided based on the mutation rate in the SHM-targets.

Groups	SHM indicator	Mutation enrichment in WRCY (P-value)	C:G over A:T (P-value)	Transition over Transversion (P-value)	Average RPKM in Mutated Samples	Average RPKM in Unmutated Samples	RPKM fold change	Average RPKM in Normal
Group 1 (mutation rate > 8e-5)	0.11	3.12(0.13)	1.25(0.17)	1.67(0.32)	502.7	3 <mark>57.</mark> 1	0.59	463.3
Group 2 (mutation rate > 4e-5)	0.27	2.02(0.35)	1.25(0.33)	1.74(0.31)	50.96	57.34	0.03	74.4
Group 3	0.38	1.17(0.45)	1.1(0.51)	0.72(0.33)	50.29	50	0.03	48.72
IGH	0.14	2.7(0.15)	1.19(0.25)	1.3(0.31)	4482	2202	0.39	2846

The difference in RPKM values reflects a trend towards higher mRNA abundance of the mutated genes. This coincide with the observation that gene expression promotes SHM.

elation between itions and angements

Future works

- The processing pipeline is specially in early stages (include more analysis).
- Data visualization and GUI to browse results.
- Utilizing *Big Data* technologies to improve performance.
- Incorporate other data sources in a systematic way (pathways, PPI networks, ...).
- Implement mechanisms to share data.

C Cancer Agency | Research Centre

ARE + RESEARCH

Canada's Michael Smith Genome Sciences Centre

agency of the Provincial Health Services Authority

Anthony Fejes
Steven Jones
Inanc Birol
Ryan Morin
Maria Mendez-Lago
Nina Thiessen
An He
Richard Varhol
Tina Wang
Richard Corbett
Misha Bilenky
Gordon Robertson

Andy Chu

Readman Chiu

Karen Mungall

Thanks