

Modulation of *Dio1* gene expression by edible mushrooms extracts in normo- and hypercholesterlemic mice

Alicia Gil-Ramírez^{1*}, Víctor Caz^{2*}, Roberto Martin-Hernández³, Francisco R. Marín¹, Carlota Largo², Arantxa Rodríguez-Casado³, María Tabernero², Guillermo Reglero¹, Cristina Soler-Rivas¹

¹Department of Production and Characterization of Novel Foods, CIAL – Research Institute in Food Science (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

> ²Department of Experimental Surgery, Research Institute Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain ³IMDEA Food Institute. Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), Crta. deCantoblanco nº 8, 28049 Madrid. Spain

CHOLESTEROL HOMEOSTASIS

Regulated by genes involved in...

OMICS International Food & Beverages

...cholesterol metabolism pathways

....inflammatory metabolism response

....thyroid metabolism ------High LDL levels are associated with hypothyroidism

Thyroid hormones

• Upregulate LDLR mRNA, the trasncript of LDL receptor²

Lower cholesterol levels in serum

• T3 (triiodothyroine) is a potent mediator of APOA1 gene

expression

Hypothyroidism ---- lower plasma APOA1 levels² Hyperthyroidism----higher plasma APOA1 levels²

Indo-Global Summit and Expo on

International Food & Beverages

OMICS

LDL= low density lipoproteins

2. Han H *et al.* Biol Trace Elem Res, 2012.

D1- a selenoprotein named type 1 iodothyronine deiodinase

Dio1 mRNA expression

OMICS

Indo-Global Summit and Expo on

nternational Food & Beverages

liver, kidney, thyroid, pituitary gland, or intestine

liver, kidney and intestine

Experimental

Biological material and extracts preparation

Animal and diets DIETS C57BL/6JRj mice **5 weeks** Standard (ND)----Safe Rodent diet A04 old High-cholesterol diet (HCD)-----cholesterol and cholic acid • HCD + lard (HCDL) Males HCD + extracts HCD + functionalized lard (extracts + lard) Ezetimibe and simvastatin---drug controls No modifications **FEEDING EXPERIMENTS EXPERIMENT 1 EXPERIMENT 3** ND (control) **HCD** control ND + PE HCD + L/ PEL/BEL/SEL/BSPEL **EXPERIMENT 2** HCD 4 weeks **HDC control HDC** control 4 weeks HDC HDC + PE/BE/SE/SBE 4 weeks 4 weeks OMICS International Food & Beverages

Biochemical analysis

Liver, jejunum, ileum and cecum

Results

Modulation of selenoproteins gene expression in NOrmocholesterolemic mice

Water-soluble polysaccharide

Modulation of selenoproteins gene expression in hypercholesterolemic mice

Modulation of selenoproteins gene expression in hypercholesterolemic mice

Modulation of selenoproteins gene expression in mice fed a hypercholesterolemic diet

Thank you for your attention

Alicia Gil Ramírez Alicia.gil@uam.es

