

About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS Group Conferences

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

OPTIMIZATION FOR CCR

NHT = 33000 BPSD

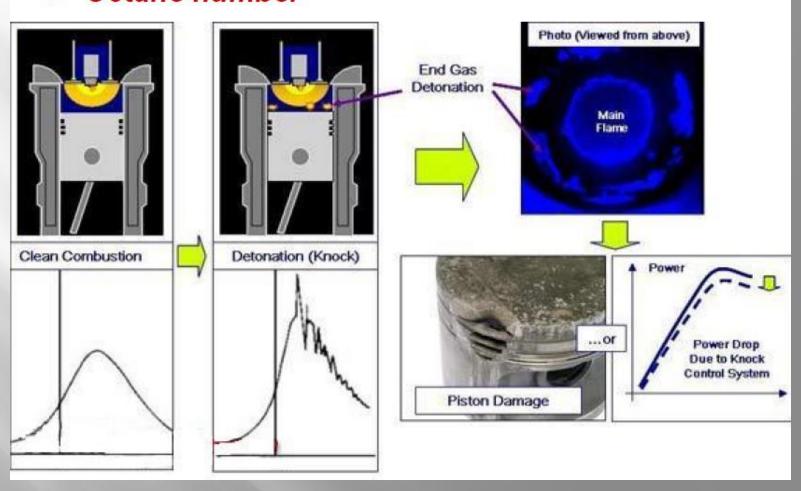
CCR=20000 BPSD

NIOEC CO.

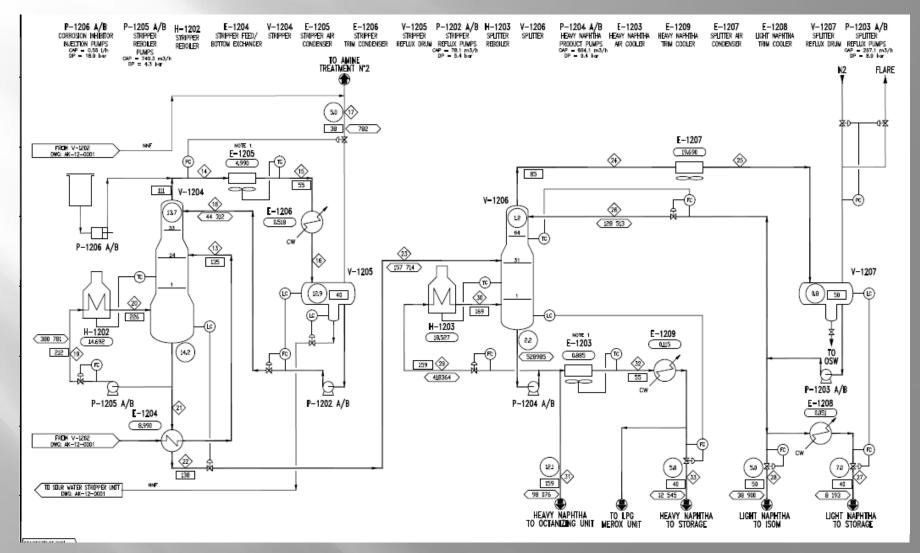
ALI SHAERI NIOEC CO.

NHT Feed

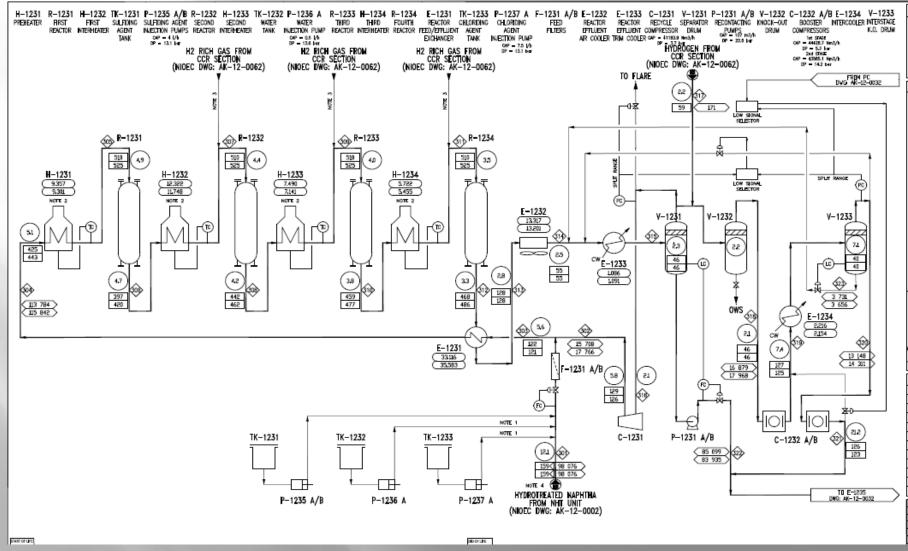
	Stabilized WSR Naphtha from Existing Stabilizer	SR Light Naphtha from Existing Splitter	WSR Naphtha from New Stabilizer in CDU2	Total Design Feedstock	Test Method
Blend Ratio, vol%	15.8	17.4	66.8	100	
Sp.Gr. (60°F/60°F)	0.729	0.703	0.730	0.725	ASTM D-1298
Distillation (°C)					ASTM D86
IBP	66	55	57	58	
5 vol%	80	58	64	64	
10 vol%	85	62	70	72	
30 vol%	95	70	94	89	
50 vol%	104	74	110	101	
70 vol%	118	79	131	119	
90 vol%	134	83	155	149	
95 vol%	141	89	162	157	
FBP	151	98	181	176	
Total Sulfur, wt%		Max. 0.05	Max. 0.05	ASTM D-4294	
Mercaptan Sulfur, wtppm		Max. 100	Max. 100	UOP163	
Total Nitrogen, wtppm		Max. 1.5	Max. 1.5	ASTM D-4629	

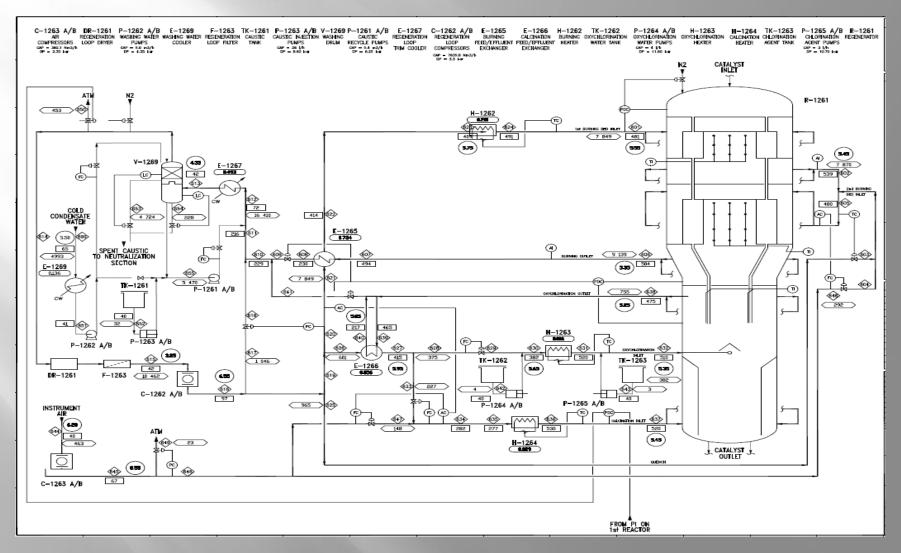


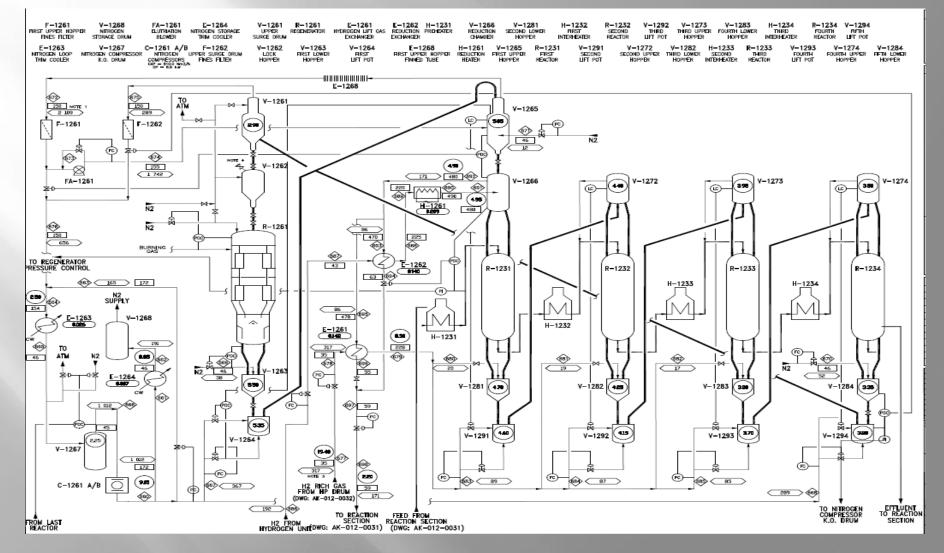
NAPHTA SPLITTER $L.N = 30-95 C_5-C_6$ $H.N = 100-175 C_6-C_{12}$

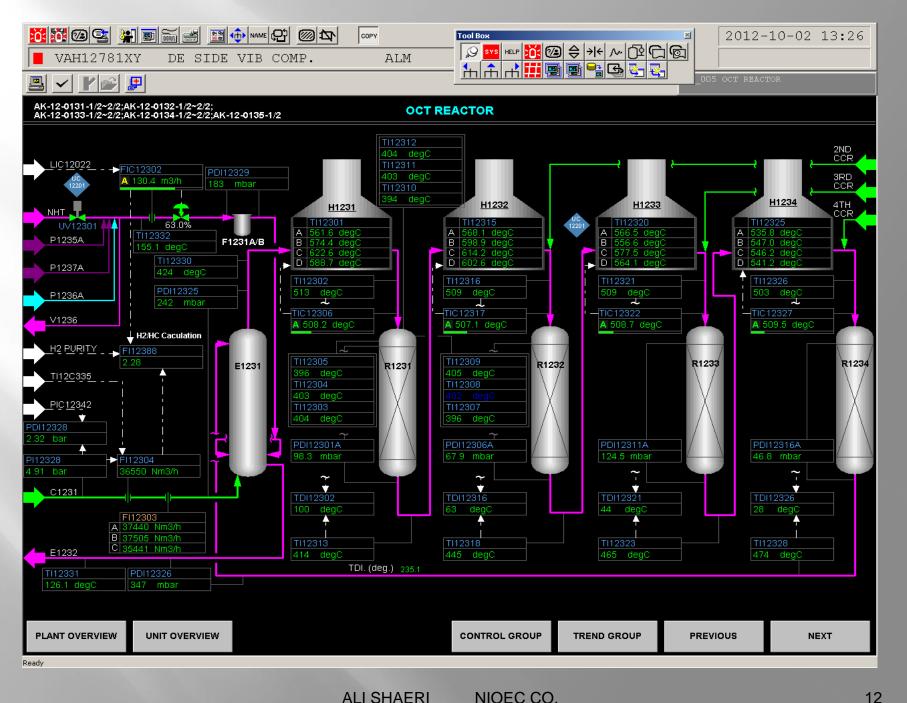

Effect of RON

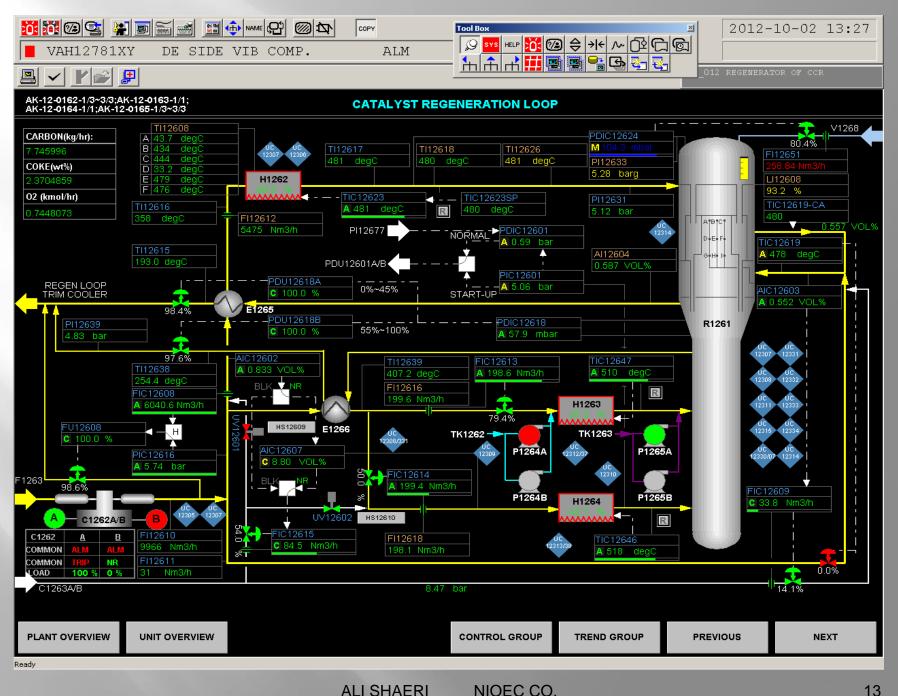
/ Octane number

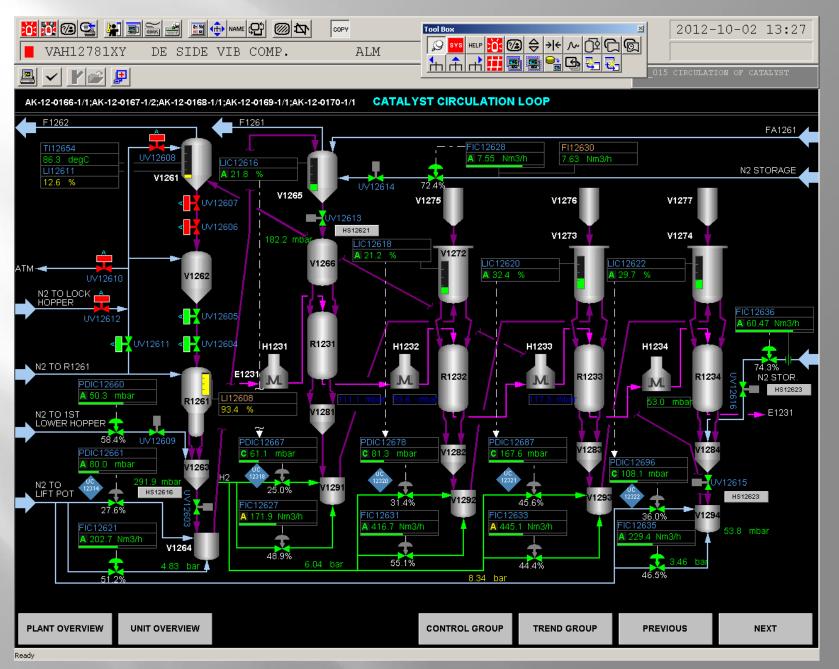



PFD









ALI SHAERI NIOEC CO.

14

FEED PONA

TBP Cut 100-150 °C, vol%	50.2	1.0	37.4	33.1
PONA Distribution, vol% on CUT				
P	(58)	(58)	(58)	(58)
О	(0)	(0)	(0)	(0)
N	(30)	(30)	(30)	(30)
A	(12)	(12)	(12)	(12)
TBP Cut 150-175 °C, vol%	3.9	0.0	19.2	13.5
PONA Distribution, vol% on CUT				
P	(53)	(53)	(53)	(53)
О	(0)	(0)	(0)	(0)
N	(27)	(27)	(27)	(27)
A	(20)	(20)	(20)	(20)
Total, vol%	100.0	100.0	100.0	100.0

Product Spec

Unstabilized LPG

Unstabilized LPG from OCT unit shall be further processed by G/C in RFCC.

Properties	Expected value	Test Method
Flow Rate, BPSD	325	
Composition, wt %		ASTM D-2163
C2	9.9	
C3	47.7	
iC4	23.0	
nC4	18.9	
C5	0.5	
Total	100.0	
Chloride Content, wtppm	Less than 1.0	

OCT Reformate

OCT Reformate will be used as a MOGAS blending component.

Properties	Expected value	Test Method
Sp.Gr. (60°F/60°F)	0.814	ASTM D-1298
Distillation, Deg C		ASTM D86
IBP	45	
10%	83	
50%	114	
90%	168	
EP	205	
MON	89	ASTM D-2700
RVP, kPaA	29	ASTM D-323
Olefin Content	1.5 vol%	UOP-880 or equivalent

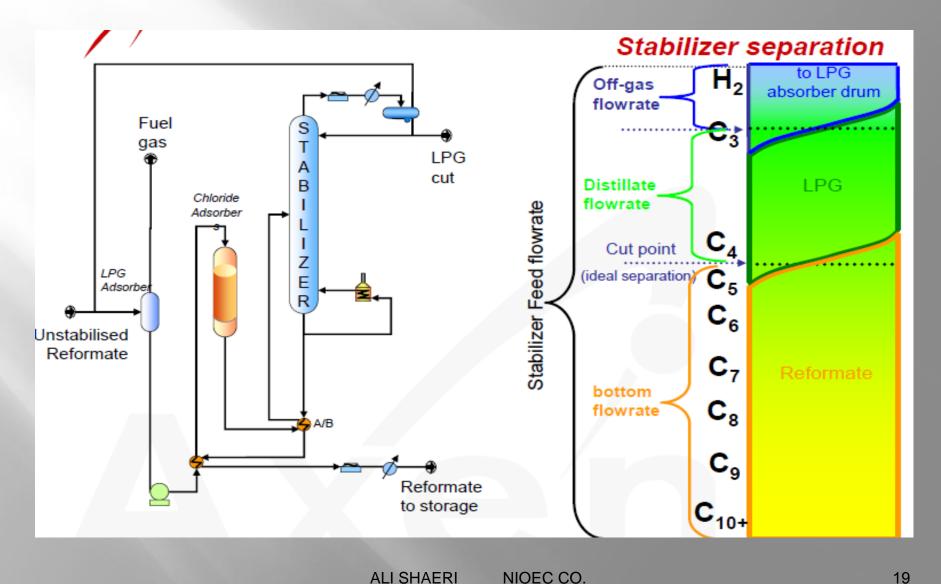
Properties	Guarantee Value	Test Method
Benzene Content	Max. 1.0 vol%	UOP-880 or equivalent
Aromatic Content	Max. 71.0 vol%	UOP-880 or equivalent
RON	Min. 100	ASTM D-2699

CCR FEED SPECIFICATION

Sulfured < 0.5 PPMW Nitrogen< 0.1 PPMW METAL < 5 PPB

> NIOEC CO. 17

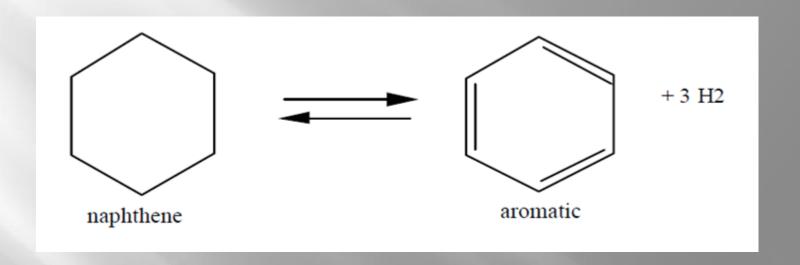
MAIN SECTION:


1-Reaction Section

2-Compression & Re contacting Section

3-LPG Recovery & Stabilization Section

NIOEC CO. 18



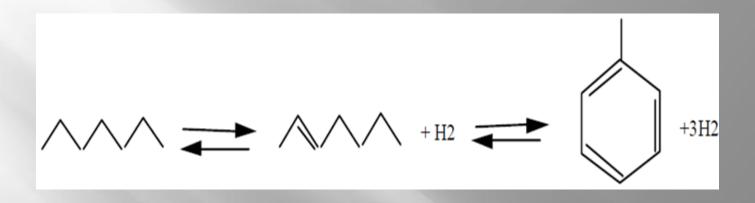
NIOEC CO. **ALI SHAERI**

MAIN REACTIONS:

EFFECT OF DEHYDROGENATION NAPHTENE ON RON

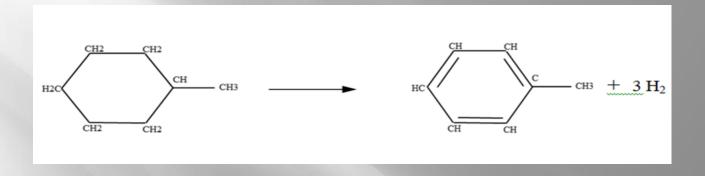
MON	RON	PURE COMPONENT
77.2	83	Cycle Hexane
61.2	67.2	Ethyl Cycle Pentane
71.1	74.8	Methyl Cycle Hexane
71	71.7	1-3 di Methyl Cycle Hexane
103.5	120	Toluene
100	114.8	Benzene

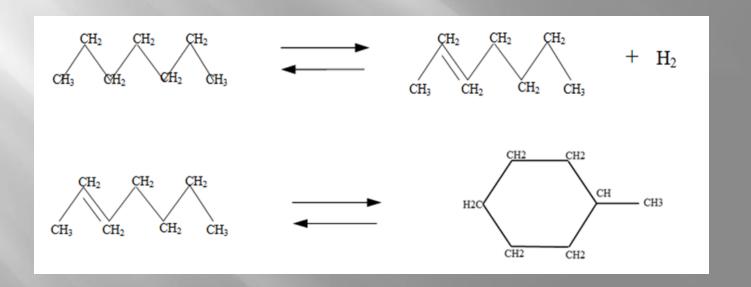
ALI SHAERI NIOEC CO.


21

LINEAR PARAFFINE ISOMERIZATION REACTION

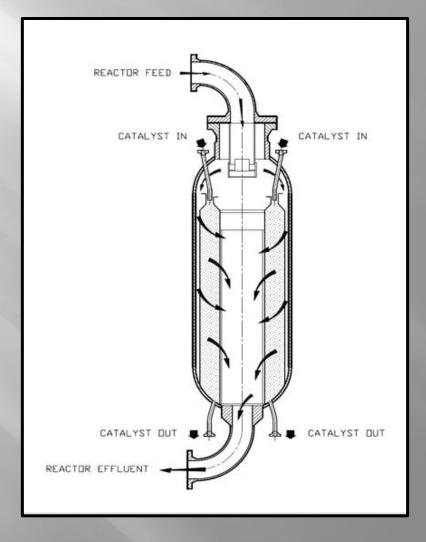
ACIDITY EFFECT EXOTERMIC REACTION





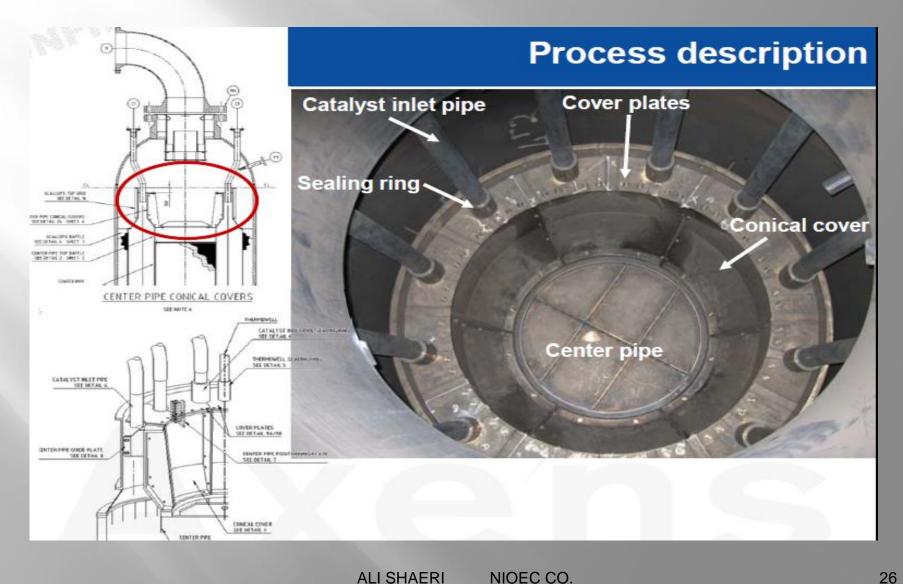
WE NEED: MORE HEAT ACIDITY ELEMENT + METAL ELEMENT ON CATALYST

NIOEC CO. **ALI SHAERI** 23

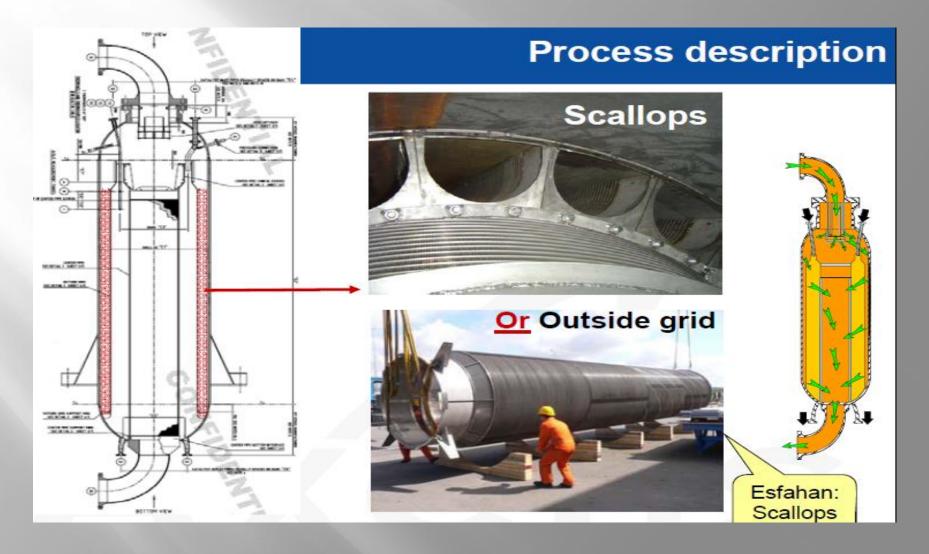


ALI SHAERI NIOEC CO.

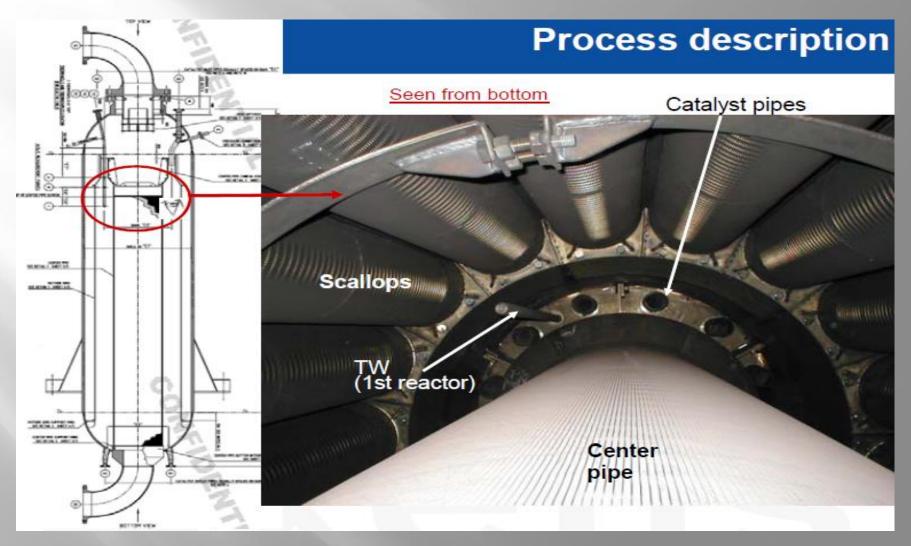
24


REACTOR

ALI SHAERI NIOEC CO.


25

NIOEC CO. **ALI SHAERI**



ALI SHAERI NIOEC CO.

27

Regeneration Reactor

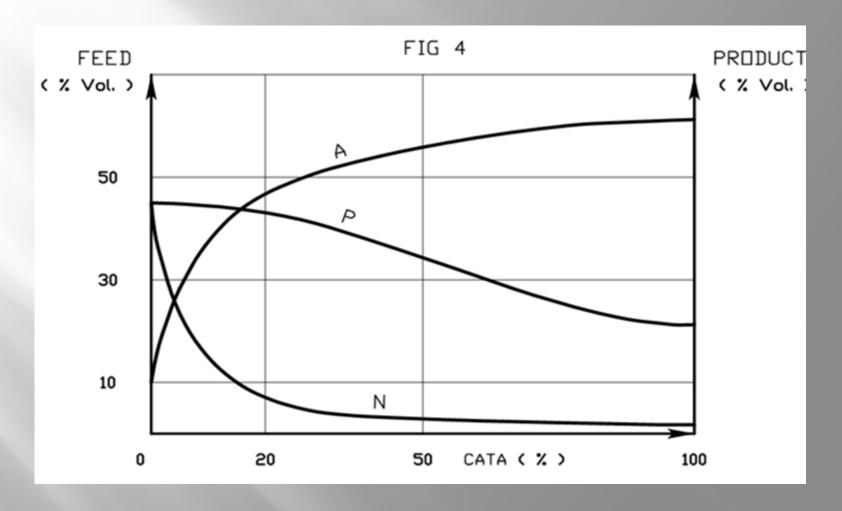
1st burning zone:

· 2nd burning zone:

$$500^{\circ}$$
C \leq outlet T \leq 510° C

Oxychlorination zone

Calcination zone:



CATALYST DISTRIBUTION

FIRST 15% SECOND and THIRD 20-25% **FORTH 40%**

NIOEC CO. 30

CCR CATALYST

Physical Properties of PS-VI Catalyst

Item	PS-VI	Analytical method
Pt/(wt%)	0.28	RIPP 37-90
Bulk Density /(g/ml)	0.57	
Surface Area/(m ² /g)	180~210	RIPP 151-90
Particle Distribution/wt%(1.6±0.2mm)	>98	
State	Reduced	

CRASHED CATALYST

- 1-CONSTANT CATALYST ACTIVITY
- 2-IGNORE EFFECTED OF WATER AND
 - 3-SULPHURE OVER CAT.
- 4-S.S MODE
- 5-Pt Dispersion Constant

Feed PIONA

Hydrocarbon Totals by Group Type

Туре	Wt %	Vol %	Mol %	
Total Aromatics	15.130	12.597	14.341	:
Total C14+	0.016	0.015	0.009	
Total Iso-Paraffins	34.306	35.711	32.923	
Total Naphthenes	17.571	16.614	17.794	
Total Olefins	1.266	1.303	1.290	
Total Oxygenates	0.000	0.000	0.000	
Total Paraffins	29.901	31.934	32.168	
Total Unknowns	1.809	1.826	1.476	
Total	100.00	100.00	100.00	

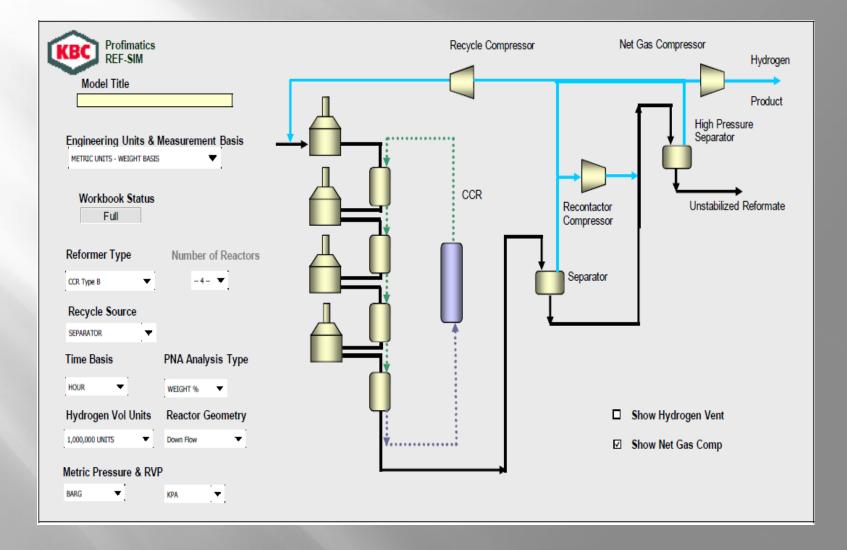
NIOEC CO. 35

SAMPLE	Method	Mix Na	aphtha	Treat	ed L.N	Treate	ed H.N	Stabi Gase	lized oline		Consid	eration:			
Sp.Gr.60/60 °F	D-1298	0.7	27	0.6	725	0.7	153	0.8	06			N.SH.B			
IBP °C	D-86					96		5	6		Stal	oilized Ga	solin	RON=9	5.1
5% Rec °C	D-86					109		s	s						
10% Rec °C	D-86					112		10	>0						
30% Rec °C	D-86					11	117		21				PH	COND	
50% Rec °C	D-86					12	22	13	34			LPC12	9.1	5.6	
70% Rec °C	D-86					12	28	14	19						
90% Rec °C	D-86					13	37	10	59						
95% Rec °C	D-86					14	12	18	32						
FBP °C	D-86					10	56	21	15						
RVP Kpa	D-323							28							
RON	D-2699							9	4						
W. Cont. ppm	عازل غيتسر														
T. Sulphur ppm	UOP-357			•	.4	0.43									
DOCTOR TEST	D-4952			N	EG										
PONA %Vol	D-539	N-P	Iso-P		0	2	ų.	J.							
Mix Naphth	a											H ₂ O	ppm	нсі	ppm
Treated H.	N									Plat Recy	cle Gas	D-4	178	UOP	-317
Stabilized Gas	oline														
TEST		РН	T. CO	N. μs/cm	Fe ppm	NaOH % NH3 ppm		ppm Solid Wt%		Carbon Wt% Chlo		Chloris	orineWt%		
метно	D	D-1293	D -	1125	D-1068	D-1121	D-1121 D-1426 D-1		1888	UOP 703		UOI	UOP 291		
Neutralisation S	olution														
Reg.Cataly	yst										0.05		1.19		
Spent Cata	lyst										2	.8	1.	15	

36

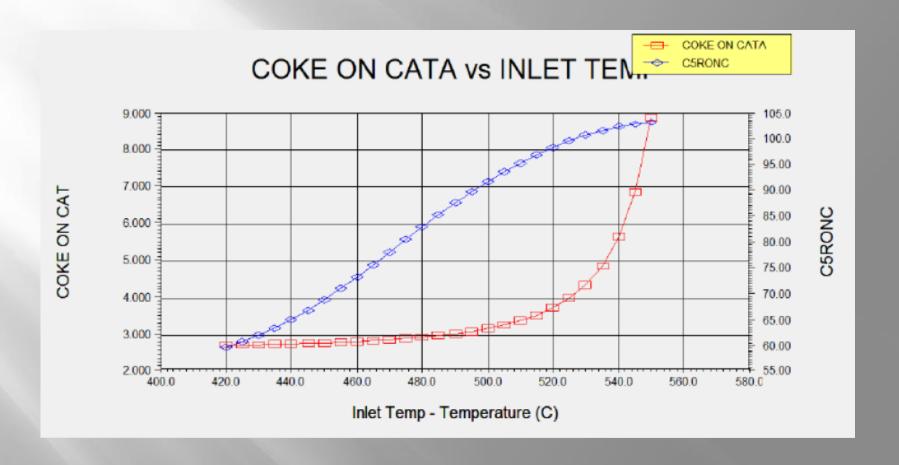
SIMULATION BY PETROSIM

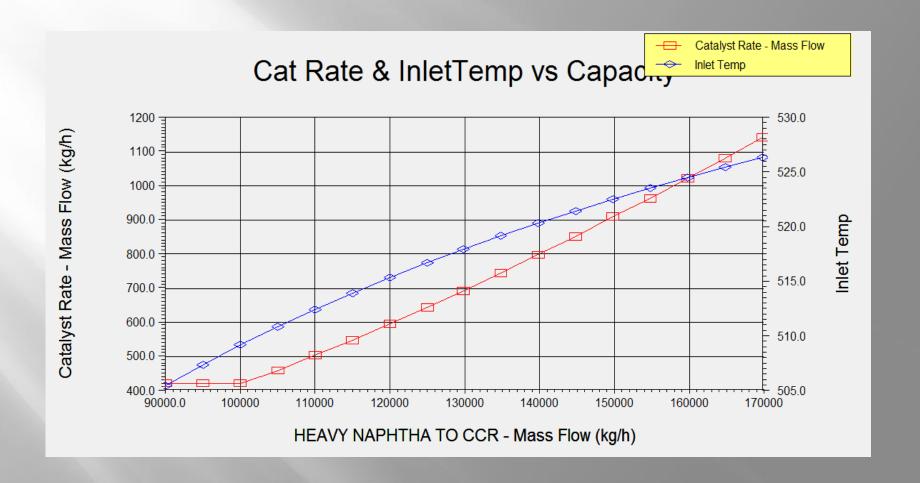
ALI SHAERI NIOEC CO.


37

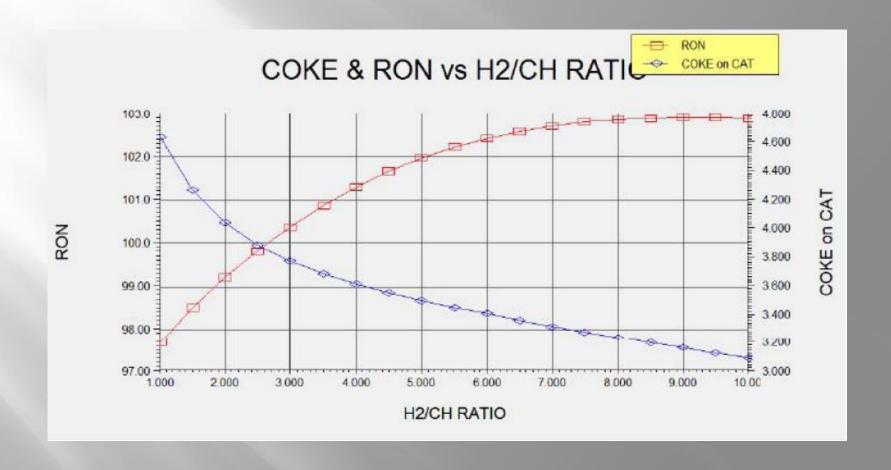
Feed Detail- PIONA

	Р		0	N	Α	
C4	0.102	0	0.01	0	0	0.112
C5	0.529	0.412	0.046	0.048	0	1.035
C6	0.482	0.779	0.052	0.35	0	1.663
C7	7.527	4.971	0.013	7.249	3.653	23.413
C8	7.61	10.322	0.053	4.605	3.887	26.477
C9	6.254	12.2922	0.88	5.56	3.577	28.5632
C10	2.215	8.447	0.059	2.008	3.675	16.404
C11	0.616	0.524	0.054	0	0.083	1.277
C12	0.105	0	0	0	0.005	0.11
C13	0.166	0	0	0	0.003	0.169
C14	0.002	0	0	0	0.002	0.004
UNKNOWN	25.608	37.7472	1.167	19.82	14.885	99.2272



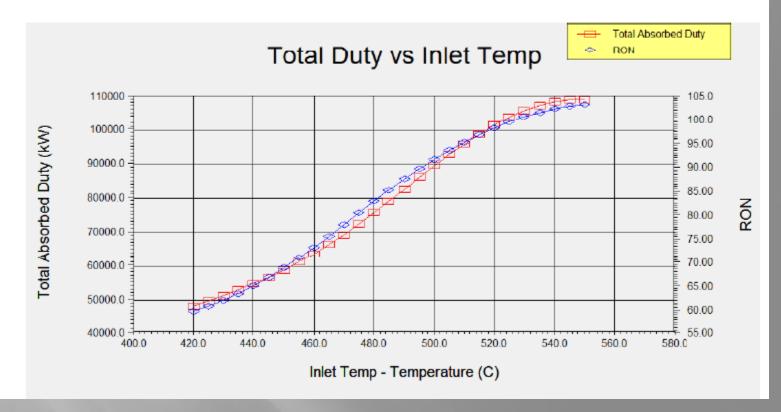


	Α	В	С	D	ı	J	K	L	М	N	0	Р
1	1 Calibration Input											
2					Case	e Number ->	1	2	3	4	5	6
3					ı	Run Case ->	у					
4		RESET ALL RESUL	TS 🔻 —		Total ->	1						
5	Feedstock					Case Title ->						
6	Fresh Feed 1											
7		Rate			tonne/h		98.4					
8		Naphthenes			wt %		19.82					
9		Aromatics			wt %		15.444					
10												
11		Naphtha type										
12		5 ring to 6 ring	Naphthene rati	0			0.92					
13												
14		Distillation			Method							
15		-00%			°C		102					
16		-05% (Optio	onal)		°C		110					
17		-10%			°C		113					
18		-30%			°C		120					
19		-50%			°C		127					
20		-70%			°C		140					
21		-90%			°C		155					
22		-99%			°C		171					
23												
24		Dist and Comp	Integration		0=No; 1=Yes							
25												
26		Composition			Type		2					
53												


- 1-INSTRUMENTATION DEFECT
- 2-LAB ERROE
- 3-SOFT WARE ERROE
- 4-NOT COMPLETE RESULT LAB
- 5- LACK OF C₁₀ + INFORMATION IN FEED

Axens believe in this H₂/HC has no any effect on RON?

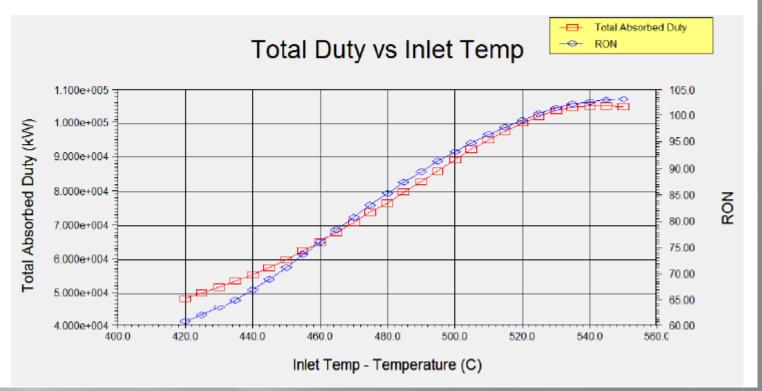
Effect of process variables


Increased		RONC	Reformate yield	H₂ yield	Coke deposit
Pressure					
Temperature		1		A	
Space velocity					
H₂/HC ratio		†	1		
	A + 0.85 N	A		1	
Naphtha	End boiling point	1	1	-	1
Quality	Initial boiling point	1	1	1	

ALI SHAERI NIOEC CO.

45

بررسی تأثیر تغییرات دمای ورودی راکتورها بر مقدار مصرف انرژی کوره های واحد تبدیل کاتالیستی



INCREASE 1 RON NEEDED 930 KW ENERGY

بهینه سازی مصرف انرژی با هدف تثبیت عدد اکتان ۱۰۰ در ظرفیت اسمی واحد تبدیل کاتالیستی احیاء پیوسته

Effect of splitter temperature bottom and IBP on RON and Yield

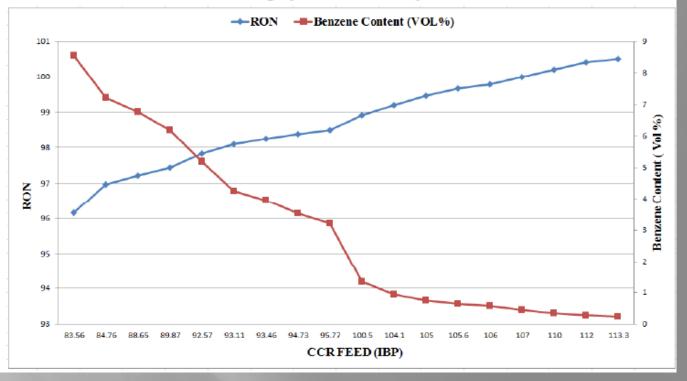
Benzene in Reformate	RON	FEED FBP	FEED IBP	Splitter Bottom Temp.
8.546	96.15	160.5	53.56	130
6.751	97.12	161.8	88.65	135
5.175	97.84	162.6	92.57	139
3.958	98.26	163.1	93.46	142
1.34	98.91	162.6	100.5	147
0.7475	99.47	164.5	105	150
0.5686	99.79	165.2	106	153
0.3335	100.2	166.3	110	157
0.2238	100.5	166.6	113.3	160

Introduction

Source: IFQC, WWFC

European Gasoline specifications trends

	EN 228 1993 Euro II	Dir 98/70 2000 Euro III	Dir 98/70 2005 Euro IV	Dir 98/70 2009 Euro V (Final Proposal)	WWFC Fourth Category
Aromatics, vol%, max	-	42	35	35	35
Olefins , vol%, max	-	18	18	18	10
Benzene, vol%, max	5.0	1.0	1.0	1.0	1.0
Oxygen, wt%, max	-	2.7	2.7	2.7/3.7 (2)	2.7
Sulfur, ppm, max	500	150	50(10) ⁽¹⁾	10	5-10
RVP, kPa	35 - 100	60.0 / 70.0	60.0 / 70.0	60.0 / 70.0 (3)	
Lead, g/I max	0.013	None	None	None	None


^{(1) 2005} introduction of 10ppm sulphur - Fuel must be geographically available in an appropriately balanced manner

^{(2) 3.7%} by mass in "high biofuel petrol" (Methanol: 3% vol, Ethanol: 10% vol, Iso-propyl alcohol: 12% vol, Tert-butyl alcohol: 15% vol, Iso-butyl alcohol: 15% vol, Iso-butyl alcohol: 15% vol, ETBE: 22%vol, other oxygenates: 15%vol)

⁽³⁾ The legal vapor pressure limit remains at 60kPa for both gasoline grades and at 70kPa for Member States with arctic or severe weather conditions. However, blending ethanol in gasoline results in a non-linear change of the vapor pressure, and, as oil refiners do not currently produce low vapor pressure gasoline, the commission has introduced a permitted vapor pressure waiver that is directly linked to the percentage of ethanol blended in gasoline (ranging from 0 vol% to 10 vol%).

بررسی تأثیر تغییرات در مقادیر تقطیر خوراک واحد تبدیل کاتالیستی احیاء پیوسته بر عدد اکتان و میزان درصد حجمی بنزن محصول بنزین تولیدی

Optimization Results for 20000 BPSD

Inlet Temperature= 512°C

Mol H₂/mol feed= 2.5

CL on the catalyst = 1.05 wt

Catalyst Circulation rate=550Kg/hr

Splitter Bottom Temperature= 152 °C

Coke on Catalyst= 3.5Wt%

1- Despite of Axens advise, we believe in this H₂/HC effects on RON

increasing this ratio acts as heat source and increase the average bed temperature.

So RON increase too

In simulation and actual test, we have proved this effect

Advice

2- if the coke on the catalyst is less than 4wt%, control system decrease Injected Air to the Calcinations section and the oxygen content in oxychlorination zone decrease below 4vol% then re-dispersion of the Pt on the catalyst decrease subsequently.