Target therapy for bone metastatic prostate cancer with Micro RNA145 inhibits tumor growth in vivo

Alexandre Iscaife; Denis Reis Morais; Sabrina Thalita Reis; Nayara Izabel Viana, Andre Bordini; Daniele Janolli; Nelson Dip; Miguel Srougi; Katia Ramos Moreira Leite

Laboratory of Medical Research – LIM 55, Urology, University of Sao Paulo, Sao Paulo, Brazil
Prostate cancer

- Most common malignancy in men
- Second cause of death

Treatment

- Active surveillance
- Radical prostatectomy
- Radiotherapy
- Hormone therapy

Localized prostate cancer 5 year survival – 100%
Metastatic prostate cancer 5 year survival – 28%

The microRNA

- **20 – 24 nts**
- **Endogenous**
- **Eukaryotes**
- **Single-stranded**
- **Dicer dependent**
- **Ago subfamily**
- **3'/5'-UTR/promoter/coding reg/pseudogene**
- **mRNA degradation/transcriptional or postranscriptional silencing (HUMAN)**

- **21 – 23 nts**
- **Endogenous or exogenous**
- **Eukaryotes**
- **Double-stranded**
- **Dicer dependent**
- **Ago subfamily**
- **mRNA or gene promoter**
- **mRNA degradation/transcriptional or postranscriptional silencing**
Characteristics of miRNAs

• Stable in different specimens
 – Control of at least 30% of human genes.
 – Regulate important cell process (apoptosis, proliferation...)
 – Related to the development and progression of cancer

Mitchell et al. *PNAS 2008;105:10513*

http://microrna.sanger.ac.uk/cgi-bin/sequences/browse.pl
Tumor suppressor miRs

miR-15a and 16-1
Target – Bcl2, CCND1, CCND3, CCNE1, CDK6, VEGF, FGF2, FGFR1

miR-143/145
Target – **RAS, Myc**, BNIP3, FSCN1, OCT4, SOX2, KLF4

OncomiRs

Cluster miR-17-92
Target – PTEN

miR-221/222
Target – p27, p57, DDIT4, PTEN, TIMP3

miR-21
Target – PTEN, RHOB, RECK, PDCD4, TIMP3
miRNA and prostate cancer

• Volinia et al. (2006)
• Porkka et al. (2007)
• Cancer stem cell maintenance – ↓miR-34a (CD44)
• Epithelial mesenchymal transition – ↓miR-200b (ZEB1,2)
 Kong et al. Stem Cell 2009;27:1712
• Tumor suppressor miRs – miR-15a, 16, 143, 145
 Musumeci et al. Oncogen 2011;30:4231
• OncomiRs – miR-221, 222
 Galardi et al. 2007;282:23716
 Zheng et al. Med Oncol 2012
MicroRNA and treatment

 - Xenograft of prostate cancer
 - anti-miR-221 / 222
 - Impairs tumor cell growth

- Takeshita et al. *Mol Ther* 2010;18:181
 - Xenograft of prostate cancer
 - miR-16
 - Suppression of tumor growth

- Humans
 - Anti-miR-122 - Miravirsen®
 - Phase II trial (NCT01200420)
 - Treatment of hepatitis C
<table>
<thead>
<tr>
<th></th>
<th>HGPIN</th>
<th>Favorable</th>
<th>Unfavorable</th>
<th>Metastasis/Cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Mir100</td>
<td>108.2</td>
<td>14.7</td>
<td>18.0</td>
<td>8.3</td>
</tr>
<tr>
<td>Mir143</td>
<td>71.1</td>
<td>1.6</td>
<td>1.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Mir145</td>
<td>5.0</td>
<td>1.6</td>
<td>3.6</td>
<td>0.04</td>
</tr>
<tr>
<td>Mir146a</td>
<td>2.3</td>
<td>0.1</td>
<td>0.4</td>
<td>0.04</td>
</tr>
<tr>
<td>Mir15a</td>
<td>1.9</td>
<td>0.1</td>
<td>0.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Mir16</td>
<td>2.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Mir191</td>
<td>4.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Mir199a</td>
<td>1.5</td>
<td>0.2</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Mir206</td>
<td>2.9</td>
<td>2.8</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Mir218</td>
<td>112.3</td>
<td>1.8</td>
<td>10.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Mir25</td>
<td>1.9</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Mir32</td>
<td>6.0</td>
<td>0.3</td>
<td>1.1</td>
<td>6.2</td>
</tr>
<tr>
<td>MirLet7c</td>
<td>31.8</td>
<td>3.1</td>
<td>7.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>
PCR after transfection

<table>
<thead>
<tr>
<th>microRNA</th>
<th>Target</th>
<th>LNCAP</th>
<th>DU145</th>
</tr>
</thead>
<tbody>
<tr>
<td>mir145</td>
<td>cMYC</td>
<td>0.71*</td>
<td>0.46*</td>
</tr>
<tr>
<td>anti-145</td>
<td>cMYC</td>
<td>1.14</td>
<td>1.70*</td>
</tr>
<tr>
<td>mir145</td>
<td>kRAS</td>
<td>0.44*</td>
<td>0.49*</td>
</tr>
<tr>
<td>anti-145</td>
<td>kRAS</td>
<td>1.16</td>
<td>1.57</td>
</tr>
</tbody>
</table>

* p<0,05

NE: not expressed
Purpose

Study the effects of treatment with intravenous miRNAs 145 in a pre-clinical model of disseminated bone metastatic prostate cancer.
Methods

- Balb/c NUDE mice – 9-11 weeks (n=8)
 - Intraventricular injection of PC-3M-luc-C6
 - IVIS® Spectrum (Caliper)
 - miRNA and atelocollagen
Atelocollagen
300 kD – 300 nm (c) – 1.5 nm (d)

miR145 ou scramble

Takeshita et al. PNAS USA 2005;102:12177
In vivo studies - Xenograft

PC-3M-luc-C6 2×10^6
RESULTS

D21
Begin of treatment

D27
End of treatment

D34

D48
End of experiment

Mir145 Control

Mir145 Control

Mir145 Control

Mir145 Control
RESULTS

<table>
<thead>
<tr>
<th></th>
<th>D7</th>
<th>D14</th>
<th>D21</th>
<th>D27</th>
<th>D34</th>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>3.8</td>
<td>0.1</td>
<td>1.0</td>
<td>9.7</td>
<td>77.6</td>
<td>468.9</td>
</tr>
<tr>
<td>mir145</td>
<td>0.5</td>
<td>0.4</td>
<td>1.0</td>
<td>3.7</td>
<td>13.0</td>
<td>211.3</td>
</tr>
</tbody>
</table>

(n=8)
CONCLUSION

- In animals with diffuse metastatic disease, the treatment with mir145 leads to a temporary response due to a fast degradation and to cancer cells mechanisms of escape and resistance.

- Further studies with this purpose and design will permit the development of novel target drugs based on microRNAs to suppress the metastatic prostate cancer growth.
THANK YOU
Intra-cardiac injection
PC3-luc-C6

Treatment

Necropsy

D0 → D7 → D14 → D21 → D24 → D27 → D34 → D41 → D48

IVIS