Released-active antibodies are innovative products for the effective management of severe respiratory viral infections

Alexandra G. Emelyanova

Laboratory of physiologically active substances
Institute of General Pathology and Pathophysiology
(Russian Federation)
Antibodies-based drugs are broadly studied and used

Application:
Autoimmune diseases; Cardiovascular diseases; Infectious diseases; Cancer; Inflammation

Limitations:
- Production
- Cost
- Pharmacokinetics
- Route of administration
- Safety

Approaches:
- Adjuvants
- Modification
- Encapsulation

Specific action + Neutralize the target

Technology of concentration reduction

Released-active form of antibodies

Specific action + Modify the target

Released-activity determined by initial substance derivatives’ emergence
TARGET MODIFICATION

Abs to IFNγ in RA form induces conformation changes of the IFNγ

Model: Nuclear Magnetic Resonance Spectroscopy

2-Dimension NMR-spectrum of IFNγ molecule
TARGET MODIFICATION

Abs to IFNγ in RA form enhance ligand-receptor interaction

Model: radioligand binding assay

Specific binding of \(^{125}\text{I}\)IFNγ with IFNγ receptor, % vs control

Picture was adapted from:
“The Interferons: Characterization and Application”
(Ed. By A. Meager) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

* - p<0.05 vs Abs to TNFα in RA form, placebo
MODIFICATION OF BIOLOGICAL PATHWAYS

Abs to IFNγ in RA form increase the number of IFNγ producing cells

Model: production of IFNγ by PBMC *in vitro*

![Diagram of IFNγ production and receptor activation]

IFNγ producing cells, per 4*10^5 PBMC

- Control
- RAF of Abs to IFNγ
- Medium

* - p<0.05 vs control

Picture was adapted from:
"The Interferons: Characterization and Application" (Ed. By A. Meager) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Anaferon
Abs to IFNγ in RA form

Launched in 2001-2002
Registered in 17 countries

The most prescribed pediatric medicine in Russia (2012)
Brand №1 in Russia 2013 prize in antiviral medicines

Publications in peer-reviewed Russian and international journals
Target: IFN\(\gamma\)
Agent: Abs to IFN\(\gamma\) in RA form

Anaferon is effective in treatment of MERS-CoV infection

Viral load of MERS-CoV in infected cells, Log 10 CDU/ml

- Anaferon
- Control
- Virus
- PEG-IFN \(\alpha\)-2b
- No virus

\(*, \# - p<0.05\) vs PEG-IFN \(\alpha\)-2b-treated group, virus control
Anaferon is effective against pandemic influenza strain H1N1

Target: IFNγ

Agent: Abs to IFNγ in RA form

Viral load in lungs of mice inoculated with ID₁₀₀ Influenza virus A/California/07/2009 (H1N1)Victoria, log TCID₅₀/ml

* - p<0.05 vs control
Anaferon is effective against ‘swine flu’ (A/H1N1)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Virus dose</th>
<th>Survival/total (% survival)</th>
<th>Mean day to death ± SEM</th>
<th>Index of protection (%)</th>
<th>Lung data</th>
<th>Medium size of foci of pneumonia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC*</td>
<td>1 LD50</td>
<td>7/20 35%</td>
<td>20.1 ± 0.9*</td>
<td>89.5</td>
<td>5.1 ± 0.9*</td>
<td>17.2 ± 4.7*</td>
</tr>
<tr>
<td></td>
<td>10 LD50</td>
<td>2/20 10%</td>
<td>11.3 ± 1.7</td>
<td>25.7</td>
<td>nd^4</td>
<td>nd^4</td>
</tr>
<tr>
<td>Oseltamivir (20 mg/kg/day)</td>
<td>1 LD50</td>
<td>10/20 50%</td>
<td>19.7 ± 0.9*</td>
<td>78.9</td>
<td>3.4 ± 0.6*</td>
<td>9.2 ± 3.0*</td>
</tr>
<tr>
<td></td>
<td>10 LD50</td>
<td>7/20 35%</td>
<td>7.9 ± 1.0</td>
<td>-2.9</td>
<td>nd^4</td>
<td>nd^4</td>
</tr>
<tr>
<td>AC* + Oseltamivir (20 mg/kg/day)</td>
<td>1 LD50</td>
<td>20.9 ± 0.1*</td>
<td>89.5</td>
<td>nd^4</td>
<td>3.1 ± 1.2*</td>
<td>16.5 ± 4.5*</td>
</tr>
<tr>
<td></td>
<td>10 LD50</td>
<td>13.3 ± 1.8*</td>
<td>nd^4</td>
<td>-29.0</td>
<td>6.3 ± 0.4*</td>
<td>34.5 ± 4.6*</td>
</tr>
<tr>
<td>Control (no treatment)</td>
<td>1 LD50</td>
<td>21/40 (52.5%)</td>
<td>15.8 ± 0.9</td>
<td>0</td>
<td>nd^4</td>
<td>nd^4</td>
</tr>
<tr>
<td></td>
<td>10 LD50</td>
<td>15/40 (37.5%)</td>
<td>7.9 ± 0.9</td>
<td>0</td>
<td>nd^4</td>
<td>nd^4</td>
</tr>
<tr>
<td>Uninfected (no treatment)</td>
<td>0</td>
<td>10/10 (100%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Fig. 1. Dynamics of body weight of mice in the course of pneumonia caused by influenza virus A/California/7/09 (H1N1).v.

Table 1

Protective activity of AC* against influenza A(H1N1) 2009-caused lethal pneumonia in BALB/c mice. When P < 0.05 values are indicated in bold.

Anaferon increases the efficacy of Oseltamivir in treatment of Oseltamivir-sensitive strain of Influenza virus (A/H1N1pdm09).

Viral load of H1N1/A (Danemark/524/09 sen) in infected cells, Log10 copies/mL

* * - p<0.05 vs Oseltamivir-treated group, virus control
INFLUENZA

Target: IFNγ
Agent: Abs to IFNγ in RA form

Anaferon is effective in treatment of Oseltamivir-resistant strain of Influenza virus (A/H1N1pdm09)

Viral load of H1N1/A (Danemark/528/09 res) in infected cells, Log10 copies/mL

Days after infection

*, # - p<0.05 vs Oseltamivir-treated group, virus control
Ergoferon proven clinical efficacy by randomized double blind placebo control trials

ClinicalTrials.gov Identifier: NCT01843842

Eligibility: both sexes, age 3-18, consultation and therapy within 24 h after the onset infection.

Randomized (n=162)

Allocated to Ergoferon (n=82)
Allocated to Placebo (n=80)

Analysis

Primary criteria: % patients demonstrating recovery/improvement in health
Secondary criteria: Dynamics of fever; Proportion of patients with normal body temperature; Severity of clinical manifestations; Severity of acute respiratory infection course; Number of intakes of antipyretics; Proportion of patients with exacerbation of the disease course

Percentage of patients with recovery/improvement in health

Morning

Day 2 | Day 3 | Day 4
6 | 14 | 20

Evening

Day 2 | Day 3 | Day 4
14 | 14 | 61

Ergoferon | Placebo

* - p<0.05 vs placebo

Ergoferon proven clinical efficacy comparable to Oseltamivir by multicenter open-label randomized trials

ClinicalTrials.gov
ClinicalTrials.gov Identifier: NCT01804946

Study design:
- Both sexes
- Age 18-60
- 12 research centers

Ergoferon proven clinical efficacy comparable to Oseltamivir by multicenter open-label randomized trials

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Duration of symptoms, days</th>
<th>ITT analysis</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1 (n=78)</td>
<td>Group 2 (n=78)</td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>2.1 ± 1.5</td>
<td>2.3 ± 1.6</td>
<td>Δ = -0.13; 95% CI < 0.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t = -2.4; p = 0.01</td>
</tr>
<tr>
<td>Flu-related non-specific symptoms</td>
<td>2.7 ± 2.2</td>
<td>2.4 ± 2.1</td>
<td>Δ = 0.29; 95% CI < 0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t = -1.7; p = 0.04</td>
</tr>
<tr>
<td>Respiratory symptoms</td>
<td>2.8 ± 2.5</td>
<td>2.6 ± 2.6</td>
<td>Δ = 0.15; 95% CI < 0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t = -2.1; p = 0.02</td>
</tr>
<tr>
<td>All influenza symptoms</td>
<td>2.7 ± 2.3</td>
<td>2.5 ± 2.2</td>
<td>Δ = 0.22; 95% CI < 0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t = -3.0; p = 0.001</td>
</tr>
</tbody>
</table>

Preclinical studies

- Single-dose toxicity
- General toxicity
- Potential mutagenic properties
- Allergenic properties
- Reproductive toxicity
- Effect on postnatal development
- Immunotoxicity

Results

- No toxic effects have been revealed
- No mutagenic properties have been revealed
- No toxic effects on lactating females (general condition, BW gain) and postnatal development

Clinical safety

- No severe adverse events reported
- Can be safely used in combination with symptomatic and other drugs, on a long term basis / in patients with immunodeficiencies
- Do not cause exhaustion of the immune system

STRONG SAFETY
TAKE-HOME MESSAGES

- Modifying activity of the RA drugs
- High safety and absence of adverse effects
- High efficacy in severe respiratory infections management
- Standard drugs’ efficacy increase in conjoint use

Released-active drugs represent promising opportunity for being included in standard treatment schemes
Thank you for your attention

The Russian Academy of Sciences
Institute of General Pathology and Pathophysiology
Laboratory of physiologically active substances

Alexandra G. Emelyanova
Research Associate

8, Baltiyskaya st., Moscow, Russian Federation
Tel. +7 (916) 556-20-19; E-mail: agemelianova@gmail.com