8th European Immunology Conference

June 29-July 01, 2017 Madrid, Spain

Theme: Disseminating the New Trends in Immunology

Released-active antibodies are innovative products for the effective management of severe respiratory viral infections

Alexandra G. Emelyanova

Laboratory of physiologically active substances Institute of General Pathology and Pathophysiology (Russian Federation)

INTRODUCTION

Antibodies-based drugs are broadly studied and used

49 Europe¹

52 USA¹

Autoimmune diseases; Cardiovascular diseases; Infectious diseases; Cancer; Inflammation²

Limitations³:

- Production
- Cost
- Pharmacokinetics
- Route of administration
- Safety

Approaches²:

- Adjuvants
- Modification
- Encapsulation

BIOTECHNOLOGICAL PLATFORM

Technology of concentration reduction

Therapeutic Antibodies

Specific action +
Neutralize the target

Released-activity determined by initial substance derivatives' emergence

Released-active form of antibodies

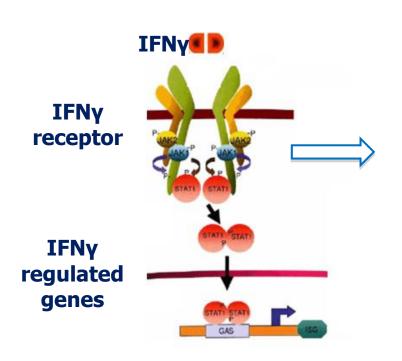
Specific action + Modify the target

2

TARGET MODIFICATION

Abs to IFNy in RA form induces conformation changes of the **IFNy**

Model: Nuclear Magnetic Resonance Spectroscopy



TARGET MODIFICATION

Abs to IFNy in RA form enhance ligand-receptor interaction

Model: radioligand binding assay

Specific binding of [125] IFNγ with IFNγ receptor, % vs control

Picture was adapted from: "The Interferons: Characterization and Application" (Ed. By A. Meager) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

MODIFICATION OF BIOLOGICAL PATHWAYS

Abs to IFNy in RA form increase the number of IFNy producing cells

Model: production of IFNy by PBMC in vitro

IFNγ producing cells, per 4*10⁵ PBMC

* - p<0.05 *vs* control

Picture was adapted from:

"The Interferons: Characterization and Application" (Ed. By A. Meager) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ABS IN RA FORM: FIRST ANTIVIRAL PRODUCT

Anaferon Abs to IFNy in RA form

Launched in 2001-2002 Registered in 17 countries

The most prescribed pediatric medicine in Russia (2012) Brand Nº1 in Russia 2013 prize in antiviral medicines

Publications in peer-reviewed Russian and international journals

Middle East Respiratory Syndrome Coronavirus

Target: IFNy

Agent: Abs to IFNy in RA form

Anaferon is effective in treatment of MERS-CoV infection

Target: IFNy Agent: Abs to IFNy in RA form

Anaferon is effective against pandemic influenza strain H1N1

Viral load in lungs of mice inoculated with ID_{100} Influenza virus A/California/07/2009 (H1N1)v, log $TCID_{50}$ /ml

^{* -} p<0.05 vs control

Target: IFNy

Agent: Abs to IFNy in RA form

Anaferon is effective against 'swine flu' (A/H1N1)

Table 1
Protective activity of AC® against influenza A(H1N1)2009-caused lethal pneumonia in BALB/c mice. When P < 0.05 values are indicated in bold.

Treatment	Virus dose	Survival/total(%	Mean day to death ± SEM	Index of protection (%)	Lung data	
		survival)			Virus titer (log ₁₀ EID ₅₀ /20 mg tissue ± SEM)	Medium size of foci of pneumonia (%)
AC®	1 LD50	7/20 35%	20.1 ± 0.9*	89.5	5.1 ± 0.9*	17.2 ± 4.7*
	I LD20	7 / 20 33 70	11.3 ± 1.7	25.7	nd ^a	nd ^a
Oseltamivir(20 mg/kg/day)	10 LD50	2/20 10%	19.7 ± 0.9*	78.9	$3.4 \pm 0.6^{*}$	9.2 ± 3.0*
	TO LD30	_, _, _,	7.9 ± 1.0	-2.9	nd ^a	nda
AC® + Oseltamivir(20 mg/kg/day)	1 LD ₅₀	10/20 50%	20.9 ± 0.1*	89.5	3.1 ± 1.2*	16.5 ± 4.5*
	10 LD ₅₀		13.3 ± 1.8*	42.9	nd ^a	nda
Control(no treatment)	1 LD ₅₀	21/40 (52.5%)	15.8 ± 0.9	0	6.3 ± 0.4	34.5 ± 4.6
	10 LD ₅₀	5/40 (12.5%)	7.9 ± 0.9	0	nd ^a	nd ^a
Uninfected(no treatment)	0	10/10 (100%)	_	_	_	_

Target: IFNy Agent: Abs to IFNy in RA form

Anaferon increases the efficacy of Oseltamivir in treatment of Oseltamivirsensitive strain of Influenza virus (A/H1N1pdm09)

Viral load of H1N1/A (Danemark/524/09 sen) in infected cells, Log10 copies/mL

Target: IFNy Agent: Abs to IFNy in RA form

Anaferon is effective in treatment of Oseltamivir-resistant strain of Influenza virus (A/H1N1pdm09)

Viral load of H1N1/A (Danemark/528/09 res) in infected cells, Log10 copies/mL

EFFICACY IN CLINICS

Ergoferon proven clinical efficacy by randomized double blind placebo control trials

Clinical Trials.gov

Percentage of patients with recovery/improvement in health

EFFICACY IN CLINICS

Ergoferon proven clinical efficacy comparable to Oseltamivir by multicenter open-label randomized trials

EFFICACY IN CLINICS

Ergoferon proven clinical efficacy comparable to Oseltamivir by multicenter open-label randomized trials

Duration of fever and time to treatment-associated resolution of influenza symptoms^a

Symptom	Duration of symptoms, days ITT analysis				
	Group 1 (n=78)	Group 2 (n=78)	Statistics ^b		
Fever	2.1 ± 1.5	2.3 ± 1.6	$\Delta = -0.13$; 95% CI < 0.28 $t = -2.4$; $p = 0.01$		
Flu-related non-specific symptoms	2.7 ± 2.2	2.4 ± 2.1	Δ = 0.29; 95% CI < 0.47 t = -1.7; p = 0.04		
Respiratory symptoms	2.8 ± 2.5	2.6 ± 2.6	Δ = 0.15; 95% CI < 0.45 t = -2.1; p = 0.02		
All influenza symptoms	2.7 ± 2.3	2.5 ± 2.2	Δ = 0.22; 95% CI < 0.37 t = -3.0; p = 0.001		

STRONG SAFETY

Preclinical studies

- Single-dose toxicity
- General toxicity
- Potential mutagenic properties
- Allergenic properties
- Reproductive toxicity
- Effect on postnatal development
- Immunotoxicity

Results

- No toxic effects have been revealed
- No mutagenic properties have been revealed
- No toxic effects on lactating females (general condition, BW gain) and postnatal development

Clinical safety

- No severe adverse events reported
- Can be safely used in combination with symptomatic and other drugs, on a long term basis / in patients with immunodeficiencies
- Do not cause exhaustion of the immune system

TAKE-HOME MESSAGES

Modifying activity of the RA drugs

High safety and absence of adverse effects

High efficacy in severe respiratory infections management

Standard drugs' efficacy increase in conjoint use

Released-active drugs represent promising opportunity for being included in standard treatment schemes

Thank you for you attention

The Russian Academy of Sciences
Institute of General Pathology and Pathophysiology
Laboratory of physiologically active substances

Alexandra G. Emelyanova

Research Associate

8, Baltiyskaya st., Moscow, Russian Federation Tel. +7 (916) 556-20-19; E-mail: agemelianova@gmail.com