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Extracellular purines in vascular
endothelial barrier preservation
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Lung Vascular Barrier

»Comprise of 3 major components: endothelium, basement
membrane and epithelium

»Regulates exchange of solutes and fluid between blood
vessels and alveol

»Compromise of vascular barrier due to Inflammatory or toxic
events results in increased

(fluid accumulation) into the lung, which is a cardinal feature of
acute lung injury (ALI) and its more severe form acute
respiratory distress syndrome (ARDS)

»ALI/ARDS leads to impaired gas exchange and may cause

> There I1s no standard treatment for
only ventilation strategies



The Normal Alveolus (Left-hand side) and the Injured
Alveolus in the Acute Phase of ALI (Right-hand side)
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Causes of ALI/ARDS

Phneumonia

VI3)or trauma
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ALI & ARDS - Incidence & Mortality in the US Alone

Table 1. Incidence of Acute Lung Injury and ARDS and Mortality from These
Conditions.*

Acute Lung
Variable Injury ARDS
Cases — no. 1,113 828
Crude incidence — no. per 100,000 78.9 58.7
person-yr
Age-adjusted incidence — no. per 100,000 86.2 64.0
person-yry
Mortality (95% Cl) — % 38.5 (34.9-42.2) 41.1 (36.7—45.4)
Estimated annual cases — no. 190,600 141,500
Estimated annual deaths — no. 74,500 59,000
Estimated annual hospital days — no. 3,622,000 2,746,000

Estimated annual days in ICU — no.t 2,154,000 1,642,000




Vascular permeability
pathways
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Permeability across endothelial and epithelial cell monolayers can
involve transcellular, paracellular or both pathways. However, the
majority of trafficking occurred through paracellular pathway.




NOW IO Measure vascuial permeaniiity

Method for assaying endothelial barrier properties in vitro

A. Electrical Cell-substrate Resistance B. Resistance Tracing
Sensor System (ECIS)
Large Gold
Endothelial Counter
Cells Electrode 12 -
L y/ehicle
Culture Medium '/ 1
> ,
PV =N g
L | g
i, Gold S
Electrode g
g 06 Thrombin
o
1V AC Voltage 2
S 04r
Lock-in
Amplifier - Thrombin Addedﬁ
0.2 | | | | | | | | |

0 1 2 3 4 5

B computer Time (hr)




Schematic of Procedure and Sample Analysis
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Vascular leakage is primarily caused by an increase
permeability of the endothelium

(Michel and Curry, 1999; Renkin, 1985).




Current model for regulation of barrier function in endothelium
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The endothelial cell barrier is regulated by contractile and
tethering mechanisms whose effects are critically dependent upon
cytoskeletal components.




Edemagenic factors involved in endothelial permeability
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Bioactive agonists, growth factors, cytokines and mechanical forces (high shear stress or cyclic
stretch), as well as activated leukocytes, serve to activate vascular endothelium. This produces
cellular contraction, and increased passage of fluid and cells through intercellular spaces into the
interstitial to initiate organ dysfunction.




Factors involved in maintaining endothelial
Integrity/restoration
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These include low levels of shear stress, the negatively charged glycocalyx, and
barrier protective molecules released by circulating platelets such as




EXtracellular purines and enaotnell

« Extracellular purines such as ATP, and its degradation
product, adenosine, are important vascular mediators

 They are readily present in the surrounding EC micro-
environment Iin vivo, and can be released Into
extracellular fluids under pro-inflammatory conditions
from several cell sources including endothelium

* Recently the therapeutic potential of purinergic agonists
In the treatment of cardiovascular and pulmonary
diseases has been studied

* Inthe USA, adenosine is clinically used for
tachycardia treatment.

Recent data implicate the involvement
of extracellular purines in EC barrier
enhancement/protection



Extracellular purine-induced signaling in endothelium
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Effect of purinergic stimulation on EC permeability
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VE-Cadherin
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Adenosine enhances and restores
EC barrier in vitro
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Effect of adenosine post-treatment on vascular
permeability and inflammation in murine model
of LPS-induced ALI

EBA in lung tissue (ug/g)
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Adenosine (i.v., 100 uM in blood,
added 3 hr after LPS) significantly
attenuates LPS (i.t., 0.9 mg/kg)-
induced vascular leak and
inflammation in mice.
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Histological assessment of the effect of adenosine on
LPS-induced lung inflammation and injury.
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H&E staining (A) and lung
Injury score (B) demonstrate
prominent lung inflammation in
mice exposed to I.t. LPS
compare to vehicle. Treatment
with adenosine attenuates
LPS-induced response.




Adenosine attenuates LPS-induced pro-inflammatory
cytokine production in murine model of ALL.
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Summary (1):

1. Extracellular purines, ATP and adenosine, enhances and
restores endothelial barrier in vitro

2. Extracellular purines protect lung vascular barrier and
reduce inflammation in murine model of LPS-induced lung
injury
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Effect of purinergic receptors depletion on EC barrier
enhancement induced by extracellular purines
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P2Y1 is involved in EC barrier regulation
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Normalized Resistance

Normalized Resistance

Extracellular purines enhance endothelial barrier
via G protein-coupled mechanism
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Depletion of Gag and i2 attenuates
ATP-induced barrier enhancement (A,
B), whereas depletion of Gas but not
Gag or i2 involves in adenosine-
induced effect (C). Collectively, these
data demonstrate that ATP and
adenosine activate distinct G-protein -
mediated pathways




ATP —induced EC barrier enhancement involved PKA activation
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A. ATP increases PKA activity.

B. Inhibition of PKA attenuates EC
ATP-induced EC barrier
enhancement C. ATP does not

increases cAMP in EC. In contrast,

adenosine agonist, NECA
significantly increases cAMP
suggesting distinct signaling
involved in ATP and adenosine-
induced PKA activation
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Role of MLC phosphorylation in the regulation of EC barrier

Actomyosin Contraction

Actln

Barrier dysfunction

f“’ﬁo""ﬁ ol

Gap formation

o Qfo o

Cellular contraction, junction disassembly

Myosin Light Chain
Kinase

Myosin-
associated
Phosphatase

o

Myosin Stress fiber formation

€

Myosin- assomated phosphatase (MLCP) by dephosphorylatlng




Effect of MLCP depletion
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. Depletion of catalytic MLCP
subunit (CS1B), but not CS1a-control
attenuates adenosine-induced EC
barrier enhancement. Depletion of MLCP
regulatory subunit (MYPT 1)
demonstrates the same effect ( )



Summary (2):

1. ATP and adenosine enhances EC barrier by activation of
different signaling

2. Purine-induced EC Dbarrier enhancement involves
activation of protein kinase A and myosin phosphatase




CONCLUSION
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Dr. Verin’s lab
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Let Us Meet Again

We welcome you all to our future
conferences of OMICS Group
International

Please Visit:

WWW.0micsgroup.com
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