ABOUT OMICS GROUP

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

ABOUT OMICS GROUP CONFERENCES

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Phrama scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

POLYMERS AND COMPOSITES FROM PLANT OIL-BASED RESIN

Alejandrina Campanella

3rd International Conference and Exhibition on Materials Science & Engineering October 06-08, 2014 San Antonio, USA

OUTLINE

- Market Drivers
- Bio-Polymers from Plant Oils
 - Plant oil overview
 - Bio-resins:

Monomers: MAESO, MAELO Diluents: styrene, MFA, ...

- Bio-Thermoset Polymer
- Bio-Composites Applications
 - BMC
 - VARTM

Summary

DIXIE CHEMICAL

Dixie Chemical is a global supplier of specialty chemicals in four key market segments:

- Thermoset Materials
- Alkaline Paper Sizing
- Fuel and Lube Additives
- Life Sciences

BIO-COMPOSITES MARKET DRIVERS

- Reduce dependence on petroleum based products
- Increase the use of renewable resources
- Reduce emissions and impacts on the environment and health
- Improve working conditions and worker safety
- Sustainable materials with comparable properties
- Ability to differentiate from competitive offerings (Bio-based)
- Open new markets throughout the supply chain
- Rural community stability and development (USDA BioPreferred)
- Improve product life cycle footprint

BIO-COMPOSITES MARKET DRIVERS

- Expand options for end of life recycle/re-use
- Help customers adapt to Local, Regional and Federal regulation
- Increasing consumer interest in sustainable products
- Produce a sustainable product that is certified and/or labeled by:

BIO-POLYMERS FROM PLANT OILS

BIO-BASED COMPOSITE MATERIALS

PLANT OIL OVERVIEW

Soybean, Corn, Sunflower, Linseed...

FATTY ACID DISTRIBUTION

# Carbons	# Double bonds	% Comp.	% Comp.
14	0	0.1	0.0
14	1	0.0	0.0
16	0	11.0	5.5
16	1	0.1	0.0
18	0	4.0	3.5
18	1	23.4	19.1
18	2	53.2	15.3
18	3	7.8	56.6
20	0	0.3	0.0
20	1	0.0	0.0
22	0	0.1	0.0
22	1	0.0	0.0

BIO-RESINS DEFINITION

BIO-THERMOSETTING POLYMER

Resin	MAESO	MAELO	Iso-UPR	Ortho-UPR
T _g (°C)	108	120	110	120
Flexural strength (MPa)	77.1	95.6	80.0	130.0
Flexural modulus (GPa)	2.7	2.8	3.5	3.6
Tensile strength (MPa)	39.7	58	55	75
Tensile modulus (GPa)	2.2	2.8	3.5	3.4

MAESO: Maleinated acrylated epoxidized soybean oil MAELO: Maleinated acrylated epoxidized linseed oil UPR: Unsaturated polyester resin

VOC/HAP EMISSIONS

Liquid resins used in molding large scale composites are a significant source of Hazardous Air Pollutants.

Composites industry consumes 9% of the styrene, but accounts for 79% of styrene emissions.

Lacovara, 1999

METHACRYLATED FATTY ACID

BIO-THERMOSETTING POLYMER

MAESO WITH STYRENE/MFA

Resin	1	2	3
Styrene (wt%)	33	20	13
MFA (wt%)	0	13	20
T _g (°C)	108	85	69
E'(MPa)	1889	1385	911
Crosslink density (mol/m ³)	3848	2165	1253
M _c (g/mol)	285	500	877
BBC	57	65	69

STYRENE EMISSION STUDY

MAESO WITH DIFFERENT DILUENTS

Resin	DB	S	VT	ММА
Diluent (wt%)	33	33	33	33
T _g (°C)	122	108	109	67
E'(MPa)	2120	1889	1838	1690
Crosslink density (mol/m ³)	4620	3848	3207	2575
M _c (g/mol)	127	285	342	427
S: styrene DB: divinyl benzene				

VI: vinyl toluene MMA: methyl methacrylate

BIO-COMPOSITES APPLICATIONS

SMC – BMC APPLICATIONS

BMC MANUFACTURING

BMC PROPERTIES

VARTM/RTM APPLICATIONS

VARTM

Composite made from Bio-Resin and Fiberglass

MAESO = MAESO33ST

VARTM

Composite made of Bio-Resin and Flax Fiber

Resin	MAESO	MAESO
Glass Fiber	-	44 vol%
T _g (°C)	96	100
E' (MPa)	1310	4373
Flexural strength (MPa)	61.8	78.9
Flexural modulus (GPa)	1.6	3.9
Tensile strength (MPa)	39.7	81.9
Tensile modulus (GPa)	2.2	3.3
BBC	57	72

MAESO = MAESO33ST

SUMMARY

- Functionalized plant oils can be used with or in place of petroleum based resins.
- Selection of oils (such as soybean or linseed oil) and reactive diluent (such as styrene, MFA and others) can be used to customize the physical and mechanical properties.
- Methacrylated fatty acids (MFA) can be used to increase the bio-based content, and reduce styrene emissions and related health and environmental risk.
- Bio-resins from MAESO/MAELO are suitable for BMC and VARTM.
- Bio-composites can be produced with good mechanical properties and high bio-content.

ACKNOWLEDGEMENT

- Dr. G. Macdonell, M. Gromacki, Dr. C. Shen, A. Grous (Dixie Chemical)
- Prof. R. Wool (University of Delaware, Center of Composite Materials and Crey Bioresins)
- Dr. M. Zhang (Crey Bioresins)
- Mrs. P. Watts. (Premix)
- Dr. J. La Scala (ARL)
- Prof. G. Palmese (Drexel University)

THANK YOU!!!!!

MALEINATED ACRYLATED EPOXIDIZED OILS

Wool and Sun, Bio Based Polymers and Composites, 2005

BIO-THERMOSETTING POLYMER

THICKENING FOR SMC BIO-RESINS

THICKENING BEHAVIOR

STYRENE EMISSION STUDY

Amount of bio-based carbon

x 100

Bio-Based Content =

Amount of bio-based carbon + Amount of petroleum based carbon

http://www.biopreferred.gov

	MAESO is compatible with VE and UDP regins	
•	MAESO33MFA (MAESO 33 wt% MFA)	77% BBC
•	MAESO13ST (MAESO with 13 wt% styrene and 20 wt% MFA)	69% BBC
•	MAESO20ST (MAESO with 20 wt% styrene and 13 wt% MFA)	65% BBC
•	MAESO33ST (MAESO with 33 wt% styrene)	57% BBC

- Resin made of MAESO (32.5%) and VE/UPR (32.5%) with 33wt% styrene
- Resin made of MAESO (32.5%) and VE/UPR (32.5%) with 33wt% MFA

28% BBC

48% BBC

Composites prepared with bio-resin and fiber glass

Bio-resin			BBC			
Monomer	Styrene (wt%)	MFA (wt%)	Neat polymer	Composite Example 1 ^a	Composite Example 2 ^b	
MAESO	33	0	57%	57%	57%	
MAESO	20	13	65%	65%	65%	
MAESO	13	20	69%	69%	69%	
MAESO	0	33	77%	77%	77%	

^a 50 wt% fiber glass

b 70 wt% fiber glass

Composites prepared with bio-resin and of carbon fiber

Bio-resin			BBC			
Monomer	Styrene (wt%)	MFA (wt%)	Neat polymer	Composite Example 1 ^a	Composite Example 2 ^b	
MAESO	33	0	57%	27%	17%	
MAESO	20	13	65%	30%	19%	
MAESO	13	20	69%	32%	20%	
MAESO	0	33	77%	36%	23%	

^a 50 wt% carbon fiber

^b 70 wt% carbon fiber

Composites prepared with bio-resin and of natural fibers

Bio-resin			BBC			
Monomer	Styrene (wt%)	MFA (wt%)	Neat polymer	Composite Example 1 ^a	Composite Example 2 ^b	
MAESO	33	0	57%	78%	87%	
MAESO	20	13	65%	82%	89%	
MAESO	13	20	69%	84%	90%	
MAESO	0	33	77%	87%	93%	

^a 50 wt% natural fiber

^b 70 wt% natural fiber

LET US MEET AGAIN

We welcome you all to our future conferences of OMICS Group International

Please Visit: http://materialsscience.conferenceseries.com/

Contact us at

<u>materialsscience.conference@omicsgroup.us</u> <u>materialsscience@omicsgroup.com</u>