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About OMICS Group

OMICS Group International is an amalgamation of Open Access
publications and worldwide international science conferences
and events. Established in the year 2007 with the sole aim of
making the information on Sciences and technology ‘Open
Access’, OMICS Group publishes 400 online open
access scholarly journals in all aspects of Science, Engineering,
Management and Technology journals. OMICS Group has been
Instrumental in taking the knowledge on Science & technology
to the doorsteps of ordinary men and women. Research
Scholars, Students, Libraries, Educational Institutions, Research
centers and the industry are main stakeholders that benefitted
greatly from this knowledge dissemination. OMICS Group also
organizes 300 International conferences annually across the
globe, where knowledge transfer takes place through debates,
round table discussions, poster presentations, workshops,
symposia and exhibitions.
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About OMICS Group Conferences

OMICS Group International is a pioneer and leading science
event organizer, which publishes around 400 open access
journals and conducts over 300 Medical, Clinical, Engineering,
Life Sciences, Pharma scientific conferences all over the globe
annually with the support of more than 1000 scientific
associations and 30,000 editorial board members and 3.5
million followers to its credit.

OMICS Group has organized 500 conferences, workshops and
national symposiums across the major cities including San
Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh,
Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom,
Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.
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Sustainable Design
Analysis (Optimization
& Molding).
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Today Design & Manufacturing Sectors Faces
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. Maximizing economies of scale
High demand for . .
o . Massive long-term investments
individualization. . .
. . in technologies, tools and
Decrease in product life cycle. .
equipment

J /
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Fragmented: large numbers of
models and product derivatives.
Enormous complexity is a
hindrance.

Inability to execute quickly
Limited to no on-the-fly
flexibility for innovations

J /
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What is Origami-Based Folding?

Image Courtesy: industrial Origami



Vehicle interior structure made by origami-based folding process



Depends on features (materials
discontinuities) added on bend
line to improve process
capabilities and final part’s
properties.

Examples of
possible shapes for
features.
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Origami-Based Folding Compared to Traditional Stamping
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Consolidates
components
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less joining and processing operations
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Enables better flexibility in the
process sequence and the material
flow; supports one-piece flow

\ production. )
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Origami-Based Folding Potential (Cont.)

ﬁ ! Eliminates the need for rigid tooling
— dedicated for each product. Enable low cost
investment.
Die Forming /Laser Cutting

| 4 Features at the bend lines affect the )

bending force, remove the limitations on
bending radius, minimize occurrence of
tears and cracks, and reduce the punch

\_ displacement analysis. Y,
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Current Limitations for Origami —Based Folding Adaptation

Paper Origami Folded Sheet

Principles Metal Components

Limitations

= Design 2-D transformation to 3-D and vise versa.
= Mechanical properties & performance.
= QOrigami-based folding rank among exiting fabricating processes.

15



Topological Analysis of Components

Flat Pattern Analysis (FPA) tool : number and design of possible layouts,
bend lines location and number, effect of initial 3-D geometry type on
resulted flat pattern, and the conditions to determine validity of flat
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Final Step of Flat Pattern Generation

Geometrical & Topological Data Topological Info Representation of Topological Info
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Qattawi, A., Mayyas, A., Thiruvengadam, H., Kumar,\V., Dongori, S., Omar, A., “Design Considerations of Flat Patterns

Analysis Techniques when Applied for Folding 3-D Sheet Metal Geometries”, Journal of Intelligent Manufacturing ,
DOI: 10.1007/s 10845-012-0679-9 , (2012).



Front underbody can be made of Origami-based sheet metal folding.
However, the mechanical properties need to be investigated.



Which Flat Pattern is Best:
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Qattawi, A., Abdelhamid, M., Mayyas, A., Omar, M., “Design Analysis for Origami-Based Folded Sheet
Metal Parts” SAE International Journal of Materials and Manufacturing, 2014-01-9098 (2014).



Optimization Objectives

Design for
Manufacturing

Metrics

Design for
Cost

Design for
Assembly



" UCMERCED?

Optimality Based on Compactness

Compactness Metric (CM) is a main metric for optimized flat layout, it can be
defined in terms of different aspects serving different design requirements

A
"CM¢eometric = 02 » Total length of cut edges

'CMMin.Overall Extent — maX[( Xi — Xo )r(yi o YO)] » LargeSt_ eXt?nt N X/y
direction
"CMyin.Enclosing Area = (x; —=x0)(yi —¥o) » Utilized Material as prescribed
out of a rectangle
A

» Utilized Material as percentage of

'CMArea Condensation —

Cxi=x0 )( ¥i=¥0 ) used area to prescribed area out of a

rectangle

A is the area of a flat layout, p is the perimeter of the flat layout, xi, y, x,and y, are the largest x-
coordinate, largest y-coordinate, smallest x-coordinate, and smallest y-coordinate of all vertices in

a single flat layout, respectively 21



Optimality Based on Nesting Efficiency

=Nesting Efficiency Metric (NEM) utilizes the compactness measures as initial inputs
for further investigation with respect to nested material utilization percentage.

"A nesting efficiency of 70% to 80% (i.e. material utilization) is set as indication of
good nesting.*

nA ‘
sNEM = —. Where, A isthe surface area of a flat layout, n is the number of flat layouts cut from the strip, W
is strip width, L is the total length of strip used to produce the flat layouts.
i b — e b= T
m
() (D) T = T/C:\(Q__—)\
w B il ]
= =
) & l —) \&—) l\G/ —)
P . e L
m,n>0 m=0,n>0 m,n=0

Strip scrap model parameters; Strip width W, Layout width B, Layout length b, Distance from the edge of the layout to
the side of the strip m, Distance between the layouts n.

*Boljanovic, V. (2004), Sheet metal forming process and die design. New York: Industrial Press.

22
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Optimality Based on Nesting Efficiency (Cont.)

= A heuristic approach is followed to determine a good

nesting arrangement for multiples of each flat pattern.

= Constraints on strip width W and nesting model parameters

n & m are set before analysis.

The values of M and N in strip design model for each strip thickness and
width.

Strip Thickness Strip Width Value of Value of
(T) mm (W) mm (m) mm (n) mm
W<75 2.0 2.0
T < 06 76 <W < 100 3.0 3.0
101 <W <150 3.5 3.5
151<W 4.0 4.0
061<T <0.8 3.5
081 <T <125 4.3
126 < T <2.5 Anyv;;ue F | m=T+00158 5.5
26 <T <40 6.0
41 <T<60 7.0

Non- Valid
Angle

Flat Patterns

Define m & n for
Strip Design

v

Set Orientation
Angle for Flat
Patterns

Check W
Constraint

Calculate NEM
for each Flat
Pattern

v

( )
Select the Flat

Pattern with Max.
NEM

. >

Valid Angle
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Optimality Based on Bend Lines Orientation

= For sheet metal applications, robotic arms can be utilized to fold the part over
the bend lines in a sequential manner; process sequence and precedence must be
considered when designing a flat pattern for a folded part.

= Bend lines with minimum orientations accommodate the process capabilities —
in terms of equipment and time constraints.

=Orientation of Bends Metric (OBM) ;,is = max (nx, ny )
Where, n, is number of bend lines parallel to the x direction.

n, is number of bend lines parallel to the y direction.

!
|

| s
| 1
Y 5 Parallel to Y 4 Parallel to Y 4 Parallel to Y
LX 2 Parallel to X 3 Parallel to X 3 Parallel to X

Effect of bend lines orientation on flat pattern designs 24
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Optimality Based on Welding Cost
=\Welding Cost Metric (WCM ): Selects the flat layout

with minimum welding cost based on edges length.

=|f all the long edges for flat pattern are produced by
folding, the cost to weld such a structure will be
minimum compared to other patterns where most of the

long edges are set as weld lines.
sMinimum Spanning Tree (MST) algorithm ( Prim’s
Algorithm), conducted during topological analysis.

“WCM = Y5¥W; st

Where, Wsr) the weight assigned for edge i in the minimum
spanning tree. k is the total number of edges in a
spanning tree.

Spanning Tree 5 (MST)

Flat Pattern 5
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Deriving Production Line Requirements from Customer Needs

House of Qua

lity (Customer Need5]>

N
N

Engineering
characteristics
Knowledge-Base

il

Customer Meeds

Rule-Based
Reasoning
QFD Approach

Parts
characteristics

Knowledge-Base

Evaluated
Engineering
characteristics

Rule-Based
Reasoning
QFD Approach

Evaluated Parts
characteristics

Designer Feedback

Designer Feedback

E ,‘-F'-'_'-"h\

Key Process
Operations
Knowledge-Base

-

Rule-Based
Reasoning
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! Designer Feedback

Evaluated Key
Process
Operations
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Production
Requirments
Knowledge-Base

—

Rule-Based
Reasaning
QFD Approach

Evaluated
Production
Requirments

! Designer Feedback

Qattawi, A., Mayyas, AT., Abdelhamid, M., Omar, M., “Intelligent Automotive System Design Using
Quality Function Deployment and Analytical Hierarchy Process”, International Journal of Computer

Integrated Manufacturing, DOI:10.1080/0951192X.2013.799780, (2013).
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Production Requirements

Number of Variability in
Components Dimensions

Consolidation
of
Components
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Time

Uniformity in
Material
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Architecture
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Can Origami-Based Folding be the Natural Process to Produce Sheet
Metal?

Mechanical . ..
Research Behavior Under Effect of Material Optimized Process

Discontinuities Sequence

Loading
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