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 New Comprehenisive ‘Defect Crystal Chemistry’ Approach  

 
to Defect-Fluorite  (DF) Oxides; M1-yLnyO2-y/2  

                              
     (M4+ =Zr, Hf, U, Th, Pu, Np, etc,  Ln3+= lanthanide) 

 
 - New model to coupled Non-Vegardianity & Non-Random Defect Structure- 
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  Ceramics-2016 (Aug. 17-18, Chicago, US) (OMIC Int’l Conf.) 

 Akio Nakamura  (ASRC, JAEA) 

 Proposal of a comprehensive Defect Crystal Chemistry (DCC) model 

            for highly-defective DF oxide solid solutions (ss)  

          with various electrochem., ceramic & nulcear etc appli’s,  

       but their real physical / chemical face largely ellusive still now,    

   clarifying  macroscopic lattice parameter (a0(ss)) → microscopic mutually     

     non-random detailed cation ↔ anion coordination structure behaviour →  

                       New σ(ion)(max) & defect-thermodynamic description    

(Key role of Mӧssbauer, NMR & EXAFS etc local-structure data) 



  Highly-Defective DF Oxides MO2-LnO1.5 = M1-yLnyO2-y/2(Vo)y/2 
 
            - Structure, Property & Applications Issues - 

Yet, ’what is the real face DF oxides? ’ remains largely ellusive !  

         Various local (defect) & crystal-structure studies:  

  Diffraction (XRD, ND, ED) & Spectroscopic (NMR, XAFS, Moessbauer, 

Raman,) &Theoretic (defect-chem., statistical-thermodyn.(QC, CVM) 

& Comput.’l (Calphad, MD, MC, DFT ab-initio calculations) 

methods. 

 for 

                 Key 

    Target Properties;      
  Long-term σ(ion), phase & 

structure stability, radiation 

tolerance, catalytic activity &     

 bio-compatibility, mechan.     

             strength etc.  

         Electrochemical, 

Nuclear & Ceramic Appls; 

 Solid electrolytes for O2 sensors &    

 for SOFC, Nucl. fuels / waste-form,    

 TBC, Catalyst, Refrac. & Structure 

       Ceramics, & Synthetic Teeth / 

                         Jewels 



fluorite C-type Ln2O3 

24d site 

8b site 

defect fluorite 

F-phase  

         

        (CN=8-2y) 
C-phase 

DF Oxides: Solid Solution (ss) of F M4+O2 and C Ln3+O1.5 

 Ce(Th,U,Pu)O2 

  (except M4+=Zr & Hf) 
C-type GdO1.5 

(CN=8) 

(CN=6) 

 Dopant(Ln3+)-Vo & Vo-Vo etc interactions → 
      Complex non-random / distorted local / global     

         structure formation beyond naive random to      

           Ln3+-Vo associative one presumably for  

                simply F-C binary M4+=Ce(Th)  
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・Stabilized M+4 = Zr (Hf) :  Intermediate pyrochlore (P) (& δ) ordering 

 Pure Zr(Hf)4+O2 : monocl.CN=7 
    (rｃVIII)=0.084(83)nm <<0.097nm for Ce4+) 

Pyrochlore(P): Ln2Zr2O7 (at y=0.5): 
[Ln3+

2 (VIII)]A [Zr4+
2(VI)]BO(1)6O(2)1 

           for larger Ln3+ (=La-Gd)  

 LnO1.5 

   Stabilized Cubic ZrO2(HfO2) :      

            (Zr(Hf))1-yLnyO2-y/2 

   (~0.15-0.20  y  ~0.80 (CN=8-2y) 

       Not ‘Disordered’ DF-type but 

 ‘Ordered’ (Defect)-Pyrochlore (P)-type         

    long-range ordered:  for Δy~±0.05 

    Short-range   “         : for y>0.45 & <0.55 

  (From EXAFS, Raman, Single-Crystal XRD, etc.)  

 to δ Zr(Hf) 3Ln4O12 = [Zr]VI[Zr2Ln4]VIIO12 

    for smaller  Ln3+ = Y, Dy, Er, Yb, Sc, etc.      

          After all, as a rough sketch; 

 Parent-F based M4+ =Ce & Th (An); （Ln3+-VO)     

 Stabilized M4+ =Zr(Hf ) (SZ(SH)) ;  （Zr4+-VO) 

    (key parametr; M4+ /Ln3+  ionic-radii (rc) ratio) 

Ln3+ 

Zr4+ 

Exclusively 

 (Zr4+-VO) 

associative !  



YSZ  (Zr1-yYyO2-y/2VOy/2): The Most Representative Solid Electrolyte: 
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  (ion)(max) at y/2=0.03125, despite 

random σ(ion)~{O2-}{VO}・u ~ (2-y/2)y∙u : 
  Vo-Vo repulsion, Ln-Vo association, P micro-    

  domain model, microscopic heterogenuity, etc.   

Similar σ(ion)(max)  

in Doped Ceria & Thoria 

●：Ioffe(1978) 

      DF-type 

Stabilized-cubic 

Zirconia Phase 

      
C-type  

   S.S 
 no P 

(y=0.5) 

(b) ZrO2 - Y2O3 Phase diagram : 

     Non-P forming YSZ (CSZ)   

YSZ:  

 δ at 
y=4/7) 



            YSZ:  Electrochem. Applications 
          (→ higher-σ(ion) Sc-SZ Ce-Ln (& perovskite oxides)  
                          for lower-temperature operation & applications) 
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  O2 Sensor & Monitor for 

Automobile & Steel-making            
                    (NGK) 

SOFC (Solid Oxide Fuel Cell ):  

         Ene-Farm（~ 1 KW）  

            (Eneos) 

     Water-  

      boiler     

       unit  →        

     
Electricity-  

  generator 

      unit  

        ↓       

  Kitchen 

 remo.con 

  Bath-room 

   remo.con 



New Defect-Crystal-Chemical Approach to Non-Vegardianity & 

Complex Defect Structure of Defect-Fluorite MO2-LnO1.5 Solid 

Solutions (M4+ = Ce, Th, (Zr, Hf); Ln3+ = lanthanide)  

   A Possible Unified Generalized Vegard-Law Model &Picture of  

 Non-Vegardianity & Non-Random Defect Structure of F-C binary M4+    

   = Ce &Th as a New Direct Link to their Controversial Defect Structure   

                     

Part I : Da0(ss) (=a0(ss)-a0(VL)) analysis →Non-Random Oxygen CN(Ln3+, M4+) 

       (as coupled macroscopic→ microscopic distortional dilation)   (SSI, 181 (2010)1543-64) 

                                                                      

Part II : Detailed Mutually Non-Random Cation & Anion Concentrations →   

     Ionic-Conductivity((ion)) maximum behavior              (SSI, 181 (2010)1631-53) 

                               
Part III : Defect-Thermodynamic Descrition of Highly-Defective DF Phase  

   as a real local-structure based CALPHAD beyond the previous one. (ICCT2011) 

 

Part IV : Da0(ss)  model extension to stabilized pyrochlore-type M 4+=Zr & Hf 

                                                     (Hyperfine Int. 217 (2013) 17-26.)  
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 Part-I: Remarkably Non-Vegardian a0(ss) Data of M4+
1-yLn3+

yO 2-/2(VOy/2): 

      Apparent Da0 >> 0 for M4+ = Th & Ce, and Da0<0 for M4+ = Zr & Hf   

 

Kim’s Model (1989):                                     

a0(ss)-a0(0) =y∙ [ah+bh∙{rC(M4+) - rC(Ln3+)}] 

Ion-Packing (I-P) Model: 

   (√3/4)a0(ss) = (1-y)·rC(M4+)+y·rC(Ln3+)   

                  +ra(O
2-)+y {r(VO)-ra(O

2)}/4 

    (ra(O
2-)=0.138nm, r(VO)=0.15 nm, etc.) 

     after all y-linear approximations 

with numerical adjustable. parameters 

 Their Previous Modeling Attempt 

(Random-CN=8-2y) 

  A Generalized Vegard-Law(VL) a0 Model      

    in the random solid solutions (ss) level       

  by fitting each Shannon rC(M4+, Ln3+) data 

Otobe & Nakamura       

  SOFC-VI (1998) 

↓ 

P (δ)-type 

extra 

dilation 

   Our interest here is in ‘whether we can 

extract the non-random CN (M4+, Ln3+) data 

by using Systematized Shannon data  (Yes !) 

 ↓ 



 The Generalized VL a0(ss) Expression of M(1-y)LnyO2-y/2 : 

    a0(ss) = (1-y) fF(rC(ss)) + y fC(rC(ss))   
                           where         fF(rC(ss)) = 0.3571 + 1.5016 rC + 4.076 rC

2  

                                          fC(rC(ss)) = 0.40693 + 0.037411rC + 14.7973 rC
2  

                                         at rC(ss) = (1-y) rC(M4+) + y rC(Ln3+),  

                                          ( rC(M4+, Ln3+) from Shannon’s data )  

Distortional dilation of 

C-type LnO1.5;  fC > fF 

(CN=6) 

(CN=8) 

  rC(M4+)(VIII),  rC(Ln3+)(VI) 

random-CN=8-2y 

       ↓ 

  non-random; 

CN(Ln3+)CN(M4+)    

    8-2y M’O2 

Ln’O1.5 

  a0(ss) as the y average of the two 

hypothetic end-members at that rC: 

            M’O2 and Ln’O1.5  



･Systematized Shannon’s rC(M 4+, Ln 3+) Expressions 

To minimize the effect of  random-error of  

Shannon’s rC(M 4+, Ln 3+) data 

 rC(M4+) =  

rC(VIII)+{4.46･10-3(CN-8) -1.546･10-4  

(CN-8)2 + 1.2･10-5(CN-8)3} / rC(VIII)  

: rC(Ln3+) =  
 

  rC(VI){1 + F ･ 6.7 ･10-2 (CN-6)                 

-2.3･10-3 (CN-6)2 -2.0･10-5 (CN-6)3 } 
Where 

 F=exp[{rC(VI)(La3+)/rC(VI)(Ln3+)-1}1.5] 

Slope difference of rC(M4+) & rC(Ln3+)= 

daLn-M:  Essential for Random→Non- 

 Random Drc(ss) → Da0(ss) Change:   

dDa0(ss)  d(DrC(ss))RM→NRM  

  y ∙ (aLn- aM) ∙ dCN(Ln3+)  



2015/8/29 13 

Random→Non-Random Model fitting to apparent Da0(ss)-data 
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      Genralized Non-Vegardianity dDa0(ss)=Da0(ss)-Da0(random) 
       Largely Negative ThO2-LnO1.5    vs.   Negative to Positive CeO2-LnO1.5 
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Largely (Ln3+-VO)-type M4+=Th   vs.  Weakly & variably Non-Randdom M4+=Ce 

Consistent both with σ(ion) data and a theor. prediction (Andersson et al PNAS 03(2006) 

3518) that ‘the most near-random Ce-Pm in between Ce-Sm & Ce-Nd is most conductive’. 

Good agreement  

withY-NMR data 

 Aver. Vo-CN = 

      8- CN(Ln3+, M4+) 



a0(ss)(I-P)= (4/√3) × 

[rC+ra(O
2-)+(y/4){(r(VO)-ra(O

2-)}] 

    Compatibility with Ion-Packing (I-P) Model 

 a0(ss) = (1-y) fF(rC) + y fC(rC) 

       =fF(rC) + y {fC(rC) - fF(rC)}  
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         Derivation & Comparison 
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    Restricted (Non-)Randomness (left a) of DF oxides: Its two evidences;  

          (1) The absence of Shannon’s rC(M4+, Ln3+) data for CN<6. 

          (2) MAS-NMR direct 89Y3+(CN=8, 7, and 6) data in Ce-Y & Zr-Y  
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(CN=6) (CN=6+2x) 

Ln-rich side C-type ordered SS with three CN=VI, VII & VIII sites:      

(Restricted randomness ~ exclusion of 1st NN VO-VO config. // a0-direction) 
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M-rich side disordered three site (CN=VI, VII & VIII) DF-type SS Model: 

1st NN VO-VO exclusion occurs in a more disordered (randomized) fashion 
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     Non-Random Y3+ & Ce4+(VI, VII, VIII) site-F profile in CeO2-YO1.5    

     ・ 2- to 3-site Approach to CN(Y3+) → MAS-NMR [Y3+(VIII,VII,VI)](left): 

   Site-F ([Y3+(VIII)]+[Y3+(VII)]+[Y3+(VI)]=1) & CN (8[Y3+(VIII)]+7[Y3+(VII)]+6[Y3+(VI)]=CN(Y3+)):      

     Limiting 2-site case: [Y3+(8, 7)] for 0≤y≤0.33 (8≥CN(Y)≥7) & [Y3+(7, 6)] for 0.33≤y≤1 (7≥CN(Y)≥6)  

    → Actual 3-site case by 2Y3+(VII)→Y3+(VI)+Y3+(VIII)  (with K(Y)≠const. but y dependent).            
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MAS NMR data: 

filled ：Kim & Stebbin  

Half-filled: Maekawa  
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Non-Random Ln3+ & M4+(VI, VII, VIII) Mol-Fraction profile in MO2-LnO1.5: 

     (Mol-Fraction: {Ln3+(CN)}=y[Ln3+(CN)],  {M4+(CN)}=(1-y)[M3+(CN)]) 

Ce-Y; middle [CN=VII)] enchanced Th-Nd; middle [CN=VII)] retarded 
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Converse average non-random dopant (Ln3+) CN of anions (VO, O2-):       
                              Cations & Anions; mutually 8- & 4-fold coordinated :   

    Aver. Ln3+ CN around VO; N(Ln3+)Vo=2{8-CN(Ln3+)}  (N(Ln3+)O
2-=2 y∙CN(Ln3+)/(4- y)) 

               (C-type LnO1.5 N(Ln3+)Vo = 4 corresponds to {8-CN(Ln3+)}=2).   

O2- always remains   

near random-N=4y 

, for {O2-}=(2-y/2)     

         >>{Vo}=y/2 
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 If the system is (Ln3+-VO) associative and hence   

Ln3+ has more VOs than random (8-CN(Ln3+)) > 2y),  

VO should also have more Ln3+s than random, 

∴ Aver. Ln3+ CN of VO; N(Ln3+)Vo=2{8-CN(Ln3+)}   

 

 

Vo 
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VO(n=0-4) (initial→Final)    O2-(n=0-4) (~random) 

 

 

 

 

 

Anion (VO(n=0-4)) & O2-(n=0-4)) site-fraction Profile in Ce-Y: 

     [Y3+(VIII)]→[VO(0)],  [Y3+(VII)]→[VO(2)],  [Y3+(VI)]→[VO(4)]  

   Combination Reactions: VO(0)+VO(2)↔2VO(1), VO(2)+VO(4)↔2 VO(3)  

 

 

 

[VO(i=0-4)] takes each peak (max) 

just at N(Ln3+)Vo=0, 1, 2, 3, 4.  
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Ionic-conductivity: (ion) (i-j)  Sμm(i-j)∙{VO(i)}∙{O2-(j)}      

= (y/4)∙(1-y/4) Sμm(i-j)∙[VO(i)]∙[O2-(j)] (only i, j=0, 1 effective)  

μm(0)= 8μm(1)=400μm(2)=2000μm(3)(~∞μm(4))  μm(0)= 8μm(1)=400μm(2)=2000μm(3)(~∞μm(4))  μm(0)= 8μm(1)=400μm(2)=2000μm(3)(~∞μm(4))  
μm(0)=10 = 8μm(1) 

            =8 μm(1-0)  (=400μm(2)) 

σ(ion) analysis of YSZ based on     
89Y-NMR CN(Y, Zr) data 

 The Model reproduces well reported    

 (ion)(exp) (Wang et al, SSI, 2(1981)95) . 
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YSZ: 89Y-NMR-based CN(Y3+, Zr4+) data  



2015/8/29 27 

 Part-III: Toward Quantitative Defect-Thermodynamic Description 
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• Cations site-fraction profile in CeO2-YO1.5 by Simple 2- to 3-site model in Part II: 
 2Y3+(VII)→Y3+(VIII)+Y3+(VI) ∴ [Y3+(VII)]=(-1+√1+(K(Y)-1)・(CN(Y)-6)・(8-CN(Y)) /(K(Y)-1)          

                    Site fraction condition : [Y3+(VIII)] + [Y3+(VII)] + [Y3+(VI)] = 1 

              Average-CN condition:  8[Y3+(VIII)]+7[Y3+(VII)] + 6[Y3+(VIII)]=CN(Y3+)      

                           → K(Y, Ce) are not constant but y dependent!            

    2Y3+(VII)→ 

Y3+(VI)+Y3+(VIII) 

    (with K(Y))  

  2Ce4+(VII)→ 

Ce4+(VI)+Ce4+(VII)  

    (with K(Ce))  
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           In addition to Intra-Y & Ce-sub-site ones:      
         2Y3+(VII)→Y3+(VIII)+Y3+(VI)  &  2Ce4+(VII)→Ce4+(VIII)+Ce4+(VI) 

      Δg(Y)=-RT・lnK(Y)= RT・ln (4[Y3+(VIII)]・[Y3+(VIII)]/[Y3+(VII)]2)     

   (Δg(Ce)=-RT・lnK(Ce)= RT・ln (4[Ce4+(VIII)]・[Ce4+(VIII)]/[Ce4+(VII)]2 ) 

QC-approach to three-site (CN=VIII, VII, VI) Model 

            (as a minumum theoretical framework)  

       ・ Inter Y – Ce sub-site disproportionation reaction:  
                   Y3+(VII) + Ce4+(VII) → Y3+(VI)+Ce4+(VIII)  

 Δg(Ce-Y)=-RT・lnK(Ce-Y)= RT・ln (4[Y3+(VI)]・[Ce4+(VIII)]/ Y3+(VII)][Ce4+(VII)])  

         (or its complementary Y3+(VII) + Ce4+(VII) → Y3+(VIII)+Ce4+(VI))   

 Δg(Y, Ce, Ce-Y)s with suitable y dependence are used to derive all the 

CN(Y3+, Ce4+), [Y3+ & Ce4+(VIII,VII,VI)] & Enthalpy (h(mix)) curves,  

to construct a self- consistent defect-thermodynamic model of DF phase.  



  Results of CN(Y3+, Ce4+) Calculations in Ce-Y 
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The best model based on Maekawa's 89Y-NMR data
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composition (x)

k(Ce)

K(Ce-Y
)

Ce4+ site :  A drastic change over the DF→C di-phasic region from a very disproport’ed    

                 (K(Ce)>>1) state to a weakly Ce4+(VII)-enhanced (K(Ce)<1) state.   

 Y3+ site :  Only a modest gradual change in the constantly more Y3+(VII)-enhanced state    

                 (K(Y)<1) than the former. 

F-type 
C-type F+C 

Each two solutions of CN(Y3+, Ce4+) 

(red & blue) should agree with each 

other in the consistent model. 



Calculated Individual Y3+ and Ce4+ site-fraction data   
 A very steep Ce4+ site-F change from a largely disproportionated  to 

a Ce4+(VII)-enhanced state is indeed found in the F+C di-phase area 

around y=0.4-0.55, corresponding to that of the above K(Ce).  



  ｈ(g)(mix) calculation 
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・Imputs ：g(Y3+(VIII, VII, VI)) 

Outputs : g(Ce4+(VIII, VII, VI)), g(i){i} & h(g)(mix) 

 Problem & Prospects: 
・ Frozen-in Non-Random Cation sublattice vs. measured    

   lower-T h(mix) data (at 800℃) relationship 

・ y-dependent g(h)(i)s: partly reasonable, for, e.g., Ce4+(VIII) 

would have different g(h) value from that at y=0. 

・ To derive the Full G(SS) exression including complex &     

   restricted non-random Cation-Anion S(config) terms. 



      Part IV:  Extention to F-P-C ternary a0(ss) Model  
   
for Stabilized M4+=Zr(Hf)) (SZ(SH)s) with inermediate a0 hump  
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        P (pyrochlore) (or δ)-type 

distortional dilation effect at y=0.5 F-P-C Ternary Model  (or  

F-P (for y<0.50) & P-C (y>0.50) 

quasi binary model)  

a0 of P-type Ln2M2O7  (y=0.50)  

 

 a0 (ss)(F - P) = (1 - 2y) ∙ fF + 2y ∙ fP  

                   ( for 0 ≤ y ≤ 0.50) 

 

 a0 (ss)(P-C) = (1 - 2y) ∙ fF + 2y ∙ fP  

                   ( for 0.5 ≤ y ≤ 1.00) 

 

       But, its combination with 

systematized Shannon’s rc(Ln3+, M 4+) 

expressions is not enpough to describe 

their a0(ss)  behaviour ! 
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Stabilzied zirconia (Hafnia); NMR, Moessbauer, EXAF data  

    89Y MAS-NMR based  

non-random CN(Ln, Zr(Hf)) 

Non-Shannonian (→） Ln(Zr)-O Bond- 

length (BL(Ln-O)) alteration inSZ(SH)  

 

CN(89Y):  

Maekawa (2008) 

P-type 
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What does this Non-Shannonian large BL Alteration mean ? 

Extended BVS rule 

     (1-y) BVS(M4+) +  

       y BVS(Ln3+) = 

     2∙(2-y/2) =4 – y 
where  

     BVS(Hf4+) = CN(M4+)s(i) 

 and 

 s(i)=exp{(R0-BL(M4+-O))/0.037} 

                    (Brown) 

BL(calc) ~  

     BL (a0(ss) model)  

Hf-Eu 



2015/8/29 35 

        Arrival at Quantitative a0(ss) model (III) with 

conversely shunken BL(Ln3+-O) & elongated BL(BL(Zr(Hf)4+-O)  



  New Defect Crystal-Chemical Approach to Non-Vegardianity and  

Complex Defect Structure of Fluorite-based MO2-LnO1.5 Solid Solutions.  

Summary 

• Part I:  A possible unified picture of Da0(ss) & Non-Random Defect    

                Structure as a coupled Distortional-Dilation phenomenon in the   

                macroscopic a0- & microscopic rc-level, respectively.  

• Part II: The aver. non-random CN(Ln3+, M4+) data + restricted non-randomness  →    

                     mutually non-random cation-anion coordination structure  →    

                    a new consistent description of  intriguing σ (ion)(max) at low-y range 

• Part III: A new real local-structure based defect-thermodynamic model of DF phase  

 The DCC Model is expected to be useful as a macroscopic approach to  

their comprehenisve a0(ss), defect-structure & thermodynamic analysis       

        in conjunction with other various exp. & theor. techniques. 

•  Part IV : Da0(ss)  model extension to stabilized pyrochlore-type M 4+=Zr & Hf 



  Thank you for your kind attention. 
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