etics of biodegradation of age due to addition of orides

DEPARTMENT OF CIVIL ENGINEERING YA NATIONAL INSTITUTE OF TECHNOLOGY JAIPU

. B. Gupta

nor: Sunderramieddy)

ents:

- ntroduction
- bjectives of the study
- **1ethodology**
- esults
- onclusions

n Megacities^a

17 coastal megacities covering about 25% of the world's population

Wastewater characteristics of from various fishery product and vegetable pickling industries

ct	Unit	Canned sardine	Canned shrimp ⁽²⁾	Canned mussel/oyster	Tuna	Fish meal	Kim chi pickles ⁽³⁾	Cucumber pickles ⁽¹⁾	Sa
ewater	m³/ton	9	60	20-120	22	97	0.6	17	
	kg/ton	9	120	60	15	194	0.7	33	
	kg/ton	5-6	54	-	11	-	-	5	
	kg/ton	27	42		6	-	-		
s ine		Off-load, sauce filling/can washing	Brine filling, cooking, sealing, can washing	cooking, washing	cooking, sauce filling/sealin g/ can washing	Off-load, centrifuging, storage	Fermenting	Fermenting, pickle washing	Fe
ater	% of total volume	39 (seawater)	2 – 2.5 ⁽²⁾	3 ⁽³⁾	3 ⁽³⁾	95 (seawater)	100	56	
	g NaCl/L	30-35	20 – 30 ⁽²⁾	21 ⁽³⁾	23 ⁽³⁾		100	30 – 200	
		UNEP, 1999	UNEP, 1999	UNEP, 1999	UNEP, 1999	UNEP, 1999	Choi & Park,1999	Middlebrook 1979	Mi 19
material				ana stanistica af		na fichany ny	aduat and	vogotoblo	

, 1971 for waste brine only Wastewater characteristics of from various fishery product and vegetable

pickling industries (Dan N. P, 2001).

Highly saline wastewater is during the manufacture of chem as pesticides, pharmaceuticals, and during oil and gas recovery (Henze M et al., 1995). In addi salt concentration found in th leachates (Ellouze M et al., 2008

Characteristics of leachates (Pirbazari, 1996).

1111 1.11111.	Leachate		Domestic waste landfill	Hazardous
	COD	mg/L	3,050 – 3,450	9,000 – 10
	BOD 5	mg/L	1,505 – 1,710	6,950 – 7,5
	тос	mg/L	905 – 965	3,040 - 3,5
	SS	mg/L	460 – 565	862 – 946
	TDS	mg/L	5,800 – 6,250	22,600 – 2
1	TKN	mg/L	75 - 84	160 – 180
reject	Oil and grease	mg/L	60 - 80	
5	рН		-	4.3 - 6.0

Presence of salinity up to certain concentration (1-2 g/L) has been sho o improve anaerobic sludge digestion, while concentrations over 20 g an cause severe osmotic stress in bacteria leading to plasmolysis and oss of cell activity (Glenn E., 1995).

High salt content in wastewater is known to significantly reduce reatment efficiency of conventional activated sludge, nitrification a enitrification processes (Kargi F and Uygur A., 1996).

Effects of high salt concentrations on biological treatment process are reat concern and present a challenge to the environmental engineers heir safe disposal.

TED SLUDGE PROCESS :

Adverse effects of high salinity in activated sludge process

thors	Experiment	Results				
Voran (1965)	Increasing influent from 100 mg Cl/L $ ightarrow$ 20,000 mg Cl/L ($pprox$	 Solid losses → disrupting clarifier 10% loss in BOD₅ removal 				
	33 g NaCL/L) over 2 to 3 weeks					
		-	Inhibiting nitrification			
)	Changing TDS up to 35,5 g NaCL/L	-	Decreasing BOD ₅ removal from 97% to 25% for 6 days after			
		 Rapid die-off of rotifers & stalked/mobile ciliata protozoa 				
		-	Turbid in effluent			
nfelder	Operating continuous flow activated sludge with low F/M	-	Slight effect on BOD removal			
	ratio at \leq 35 g NaCl/L	-	Effluent SS did not increased due to low F/M			
	If salt content > 35g/L	-	 Decreasing the population of protozoa and then disappeared 			
		-	Increasing effluent SS			
Attar (1995)	Increasing salt content to 10 g/L and 30 g NaCL/L	-	Decrease in substrate utilization rate			
		- But increasing biomass yield due to selecting salt tolerant species (halophili				
			bacteria such as Zooglea ramugera, Halobacteriaceace etc.)			
<i>al.</i> (1996)	Oil-field brine with salt content of 29 g/L	-	Increasing wash-out of activated sludge as hydraulic loadings > 2.5m ³ /m ³ .day			
r (1996)	Increasing in influent salt contents over 1% for RBC	-	Decreasing COD removal rate & efficiency.			
		-	COD removal was down to 60% at 5% salt content.			
		-	Increasing salt content caused linear reduction in COD removal efficiency.			

rse effect of salt on activated sludge process (Dan N. P, 2001).

OBIC TREATMENT :

	Experiment	Results
. (1984)	AF with surface area of 600 m ² /m ³	Decrease in gas production (dropped 65%)
	at 30 g NaCl/l	- TOC removal was decreased from 98% to 70%
		- Decrease in pH from 6.8 to 5.4
	at salt content of 60 g/L -	Gas production dropped below 15%
		- TOC removal $< 20\%$
l. (1995)	UASB and AF	- Reducing 50% methanogenic activity at salt content
		> 33 g NaCl /L
		- Shocked at concentrations ranging from 10-21 g
		NaCl/L for unadapted sludge
l. (1993)	Anaerobic and aerobic system at	Low COD removal for whole system (50%). COD
	32 g/L (NaCl)	removal (70%) could be improved at very low F/M
		ratio (0.02 for anaerobic and 0.04 for aerobic
		process
al. (1995)	Anaerobic batch digestion	 Decreasing 50% of methane activity as increasing. TDS by 10-25 g NaCl/L

ctives of the study:

- determine the BOD exertion rates of glucose–glutamic a GA) solution mixed with sewage under controlled addition orides of 0 to 20 g/L at 20°C.
- develop a mathematical equation derived from experimental alts in order to describe both stimulation as well as inhibit exts by a single expression and validate it by fitting aga ondary data reported in the literature.

HODOLOGY :

- Frab samples of sewage were collected from STP of MNIT Jaipur.
- GA solution of 150 mg/L each was prepared and 6 mL of it was mixe with sewage a controlled manner for making test samples.
- amples having different chloride additions of **up to 20 g/L** (zer hloride sample means no additional NaCl to the GGA-sewage sample vere prepared using **analytical grade NaCl**.
- **OD** test was carried out by as per APHA et al., 2010.
- ettled biomass from SST of STP Delawas, Jaipur (based conventional ASP) was used as **"seed" for BOD analysis**.

HODOLOGY ...

- All experiments were conducted at a temperature of 20° $\pm 2^{\circ}$ C.
- For the first, two sets of samples having, **0** to **8** and **0** to **20** g of chlorides concentrations, BOD exertion was monitor every day for a **5- day period.** However, in the third set havi chloride concentrations of **0** to **12** g/L, the BOD exertion w monitored up to three-day period. In addition, in the fourth s of experiments with **10** to **20** g/L of chlorides concentration only BOD₅ exertion was monitored.
- Trial version of **STATISTICA 2014 software** was used f data analysis.

lation of Kinetic coefficient K

THEORETICAL CALCULATIONS OF BOD = $Y=L_0 (1-10^{-(kt/2.303)})$

ULTIMATE BOD CALCULATIONS:

COD of sewage sample was considered as its **ultimate BOD**. The **theoretical COD of 373 mg/L** as determined from the chemical formula of **GGA solution** was considered as its ultimate BOD.

(373 mg/L * 6 mL) + (COD of sample mg/L* mL of Sample)

(mL of GGA (6) + mL of sample taken)

LTS

BLE-1

BOD observations at low chloride concentrations of 0 to 0.8 mg/L

Days	Average BOD (mg/L)						
	0 g/L	0.2 g/L	0.4 g/L	0.60 g/L	0.80 g/L		
	Chlorides	Chlorides	Chlorides	Chlorides	Chlorides		
	45	51	64	Not	Not		
				observed	observed		
	55	62	72	Not	Not		
				observed	observed		
6	87	85	90	Not	Not		
				observed	observed		
-	115	117	120	Not	Not		
				observed	observed		
5	126	134	143	147	147		

S	Average BOD (mg/L)									
	0 g/L	5 g/L	10 g/L	15 g/L	20 g/L					
	Chlorides	Chlorides	Chlorides	Chlorides	Chloride					
	52	60	30	Not observed	Not obse					
	85	93	71	Not observed	Not obse					
	142	115	129	Not observed	Not obse					
	167	186	137	Not observed	Not obse					
	194	200	180	131	104					

BOD₅ exertion at different chloride concentrations of 10-20 mg/L

■ 0 g/L ■ 10 g/L ■ 12 g/L ■ 14 g/L ■ 16 g/L ■ 18 g/L ■ 20 g/L

RE-1

RE-2 BOD exertion at 0, 5, 6, 7 and 8 g/L of chloride concentrations.

 \rightarrow 0 g/L \rightarrow 5 g/L \rightarrow 6 g/L \rightarrow 7 g/L \rightarrow 8 g/L

DAYS

	Reaction	constant (k)) per day						
0 g/L	5 g/L	6 g/L	7 g/L	8 g/L					
of Cl	of Cl	of Cl	of Cl	of Cl	Table-4 BOD exertion rate (k) of the s				
					at hi	gh chlori	ide conce	ntrations	of 0 to 20
0.11	0.2	0.16	0.17	0.14		1			
					Days		Re	eaction cons	tant (k) per
0.24	0.28	0.29	0.2	0.14	_				
0.21	0.22	0.24	0.19	0.16		0 g/L of	5 g/L of	10 g/L of	15 g/L of
					-	Cl	Cl	Cl	Cl
0.19	0.21	0.22	0.16	0.15	1	0.16	0.19	0.09	Not
									observed
0.17	0.18	0.2	0.15	0.13	2	0.14	0.16	0.11	Not
									observed
3 D	OD avarti	on rota (1_2)	of the se	amplac	3	0.18	0.13	0.15	Not
-5 BOD exertion rate (k) of the samples									observed

4

5

0.16

0.16

0.19

0.17

0.12

0.14

Not

0.09

observed

BOD exertion rate (k) of the samples -3 ied chloride concentrations of 0 to 8 g/L

(X)	Ratio (BOD ₅ at X g/L Chlorides / BOD ₅ at
	zero Chloride)
	1
	1.063
	1.134
	1.166
	1.166
	1.050
	1.111
	0.934
	0.862
	0.918
	0.777
	0.634
	0.675
	0.539
	0.481
	0.498

Table-6Derived data ofBOD exertion ratios atdifferentconcentrations

RE-3 Curve between BOD₅ exertion ratios and chloride concentrations.

Ratio (BOD₅ of X g/L Chlorides / BOD₅ of 0 g/L Chlorides) = $0.8801+0.1402*x-0.0212*x^2+0.0007*x^3$ $R^2 = 0.947$

Observed and Predicted values of variance data under varied chloride concentrations

Author	Chlorides (x)	Observed valu	e in literature	Predicted	% Error
	g/L	BOD ₅ Value	BOD ₅ Value	value of	((obs-
		at X g/L of	of 0 g/L Cl	BOD ₅ mg/L	pre)/obs)
		Cl		using our	
				model	
Shivani et.al.,	5	285	337	384	-34.73
(2012)	10	255	337	291	-14.11
	15	200	337	194	3
	20	221	337	271	-22.62
Gotaas (1949)	0.55	272	236	225	17.27
	1.65	240	236	250	-4.166
	3.65	250	236	270	-8
	6.4	243	236	258	-6.17
	9.2	215	236	218	-1.39
	13.75	236	236	147	37.71
	18.35	242	236	151	37.60

LUSIONS

- Chloride concentrations of up to 0.8 g/L showed stimulation of biodegradat process
- Concentrations from 0.8- 6.0 g/L showed no inhibition of biodegradation. This r perhaps be due to the fact up to this salinity, the cells exhibit a higher activity that the freshwater medium. Microbiological studies for supporting the hypothesis underway.
- Further increase in salinity (7 to 20 g/L of chlorides) restricts the osmo-regulat processes responsible for the breakdown of organic compounds within the cells microorganisms. As a result, the kinetic reaction rates of decomposition reacti suffer and show continuous inhibition.
- A single third order polynomial curve was able to represent both the stimulation well as inhibition of the biological process due to the concentration of salt up to g/L.
- The results may help formulate strategy for environmentally safe Co-disposal of rejects as well as high salt containing **industrial wastewaters** with sewage.

nces

A, WPCF, AWWA (2010). Standard methods for the examination of water and wastewater. American Public Health Association, WPCF, AWWA. 21st Ed.

e, D. L. A., Devocht, M., Van Assche, P., and Verstraete, W. (1984). Influence of high NaCl and NH₄Cl salt levels on methanogenic associations. Water Res

in, S., Brenner, A. and Abeliovich, A. (1993). Biological treatment of a high salinity chemical industrial wastewater. Wat. Sci. Tech., 27 (7-8), 105-112.

N. P. (2001). "Biological Treatment of High Salinity Wastewater Using Yeast and Bacterial Systems," PhD Thesis, Asian Institute of Technology, B land.

Ize, M., Aloui, F. and Sayadi, S. (2008). Detoxification of Tunisian landfill leachates by selected fungi, J.Hazard. Mater, 150, 642–648.

o, G., Soto, M., Méndez, R. and Lema, J. M. (1995). Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena. Enz obial Technology, 17, 180-188.

n, E., (1995). Effects of salinity on growth and evapotranspiration of Typha domingensis Pers. Aquatic Botany, 52, 75–91.

as, H. B. (1949) the effect of sea water on the bio-chemical oxidation of domestic wastewater. Domestic Wastewater Works Journal, 21(5).

ze, M., Harremoës, P., Jansen J. and Arvin, E. (1995). Wastewater treatment Biological and Chemical Processes. Springer-Verlag, Berlin, Heidelberg, New Y

i F. and Dincer A. R. (1996). Effect of salt content on biological treatment of saline Wastewater by fed-batch operation. Enzyme & Microbial Technology,

azari. (1996) Hybrid membrane filtration process for leachate treatment. Wat. Res., 30, 2691-2706.

ani, S., Dhage&Amita, A., Dalvi& Damodar, V. and Prabhu. (2012). Reaction kinetics and validity of BOD test for domestic wastewater released in Astems. Environ Monit Assess, 184, 5301–5310.

Technology by experts

L

17Voor