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Why Terrestrial Ecohydrology?
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Terrestrial vegetation greatly controls
Carbon, Water and Energy fluxes at the
Atmosphere —Biosphere interface
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How to Understand This Complexity? ..

Remote Sensing
*Upscaling (point to global)

L andsurface biophysics
*Human impacts on landsurface
*Human/natural Disturbances
*Spatio-temporal analysis

Solar Radiation
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Spatial Scale

Temporal Scale

Govind & Kumari [2014], Int. J of Ecol.



The BEPS-Terrainlab V2.0 Model

Canopy evaporation

e Spatially- Explicit

Spatial resolution is flexible

" ’ | Daily model

| Process-based and generic
Feed-back mechanisms addressed

BGCs (C,W,N cycles) are tightly coupled
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Upscaling Leaf-scale Ecophysiological Processes to the Canopy Scale

Intra-canopy physiological variability due to: Shaded Leafs Sunlit Leafs

1. Variability in Light regime

2. Variability in Water regime
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Fluxnet and the Canadian Carbon Program (Fluxnet-Canada)
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EOBS (FCRN) tower site

Science Questions

1. How the ecohydrological indicators vary in space and time in
this boreal landscape and how well we can model them?

2. What are the mechanisms of hydrological controls on
ecophysiology and biogeochemical processes?

3. What are the potential uncertainties in the simulation of C-cycle
under abstracted hydrology?
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Validation of Hydrological Parameters at the EOBS site
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Validation of Simulated Evapotranspiration with EC-Measurements
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Validation of Simulated GPP with EC-Derived GEP Measurements
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Snow and Moss Mediated Soil Thermal Modification is Critical for
Modeling Boreal Biogeochemical Processes
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Simulated C-Fluxes at the EOBS Site by BEPS-Terrain Lab V2.0
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Ecohydrological Processes in the Landes de Gascogne in SW France

Science Questions to be Answered

1. What determines interannual variability of C
and water fluxes in this ecosystem?

2. What's is the role of hydrology?

3. How nutrients, water and C interact?

4. How landuse change affect C and W fluxes?
5. How disturbances affect C and W fluxes?

6. What are the governing mechanisms of
terrestrial-benthic connectivity?




The STEPS model
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Some of the Key Spatial Inputs Used
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Improvements in the Description of the Canopy Radiative

Transfer Mechanism (CRTM)

Two Key Canopy Attributes Controlling the CRTM

1. Element angular distribution affecting radiation transmission through

the canopy at different angles (G factor)

*bp bbb %o
50 600 0e

FITRIINT,
JLELS.L

-+ planophile

erectophile

2. Element spatial distribution (Q) affecting the amount of radiation transmitted
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Spatial variation of annual ET and GPP over the Leyre Watershed
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Conclusions

* In boreal settings, ecological models that abstract hydrology returns biased
estimates. Hence C, W and N cycles should be “tightly” coupled within
models. The approach of the BEPS-Terrainlab V2.0 is ideal to address this
uncertainity.

« Improved description of Canopy Radiative Transfer Mechanism is critical for
modeling the terrestrial ecohydrological processes.

* Modeling of ecohydrological processes in agroecosystems poses many
challenges.

« Anew model (STEPS) is being created by modifying the BEPS-TerrainLab
V2.0 model, accounting for the unique issues in agroecosystems (crop

rotation, C4 photosynthesis, irrigation and N-fertilizer transformations). This
platform serves for scientific, pedagogic and policy (DSS) actions.
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