

The correlations of activins and follistatin with viral load, liver damage, IL-6 and TNF-α in treatment naïve patients with chronic hepatitis C genotype 1 and 4: A case-control study

<u>Ahmed Mohammed Ashshi¹</u>, Bassem Refaat¹, Adel Galal El-Shemi¹ and Adnan AlZanbagi²

Chronic Hepatitis C (CHC)

- WHO:
 - 170 million infected World Wide
 - 3-4 NEW infections/Year
- It has been classified in to 6 genotypes
 - Genotypes1 and 4 in Saudi Arabia
- Major cause of liver damage
 - Fibrosis/Cirrhosis
 - Hepatocellular Carcinoma

Course of illness with Hepatitis C

Immune Response to HCV

Acute Phase of HCV Infection

Activins

- Members of TGF-β superfamily
- Originally identified as gonadal proteins
- Recently involved in many systems:
 - Growth & differentiation
 - Inflammation (Pro or Anti depending on cellular context)
 - Fibrotic diseases

Structure of Activins proteins

Follistatin (Activin binding protein)

Activins and the Immune system

Dendritic cells

- promotes differentiation from monocytes
- · stimulates recruitment
- · inhibits T cell activation functions

Research Questions

What are the effects of CHC genotype 1&4 on serum activin-A & B and follistatin

Is there a difference between:

- Male and Female patients?
- Genotype 1 & 4?
- Do activins & follistatin correlate with:
 - Pro-inflammatory cytokines (TNF-α and IL-6)?
 - Liver enzymes?
 - Liver fibrosis?

Inclusion criteria

Control Group	Case Group		
Patient age \geq 18 \leq 45 years.	Patient age \geq 18 \leq 45 years.		
No concurrent acute/chronic disease	HCV RNA positive		
Proven fertility	No concurrent infection with HBV or HIV		
Not taking exogenous hormones/oral contraceptive pills for at least 3 months prior to enrolment	Proven fertility		
No history of hospitalisation and no medication for significant clinical disease	Not taking exogenous hormones/oral contraceptive pills for at least 3 months prior to enrolment		
laboratory results for their haematological, biochemical and metabolic parameters were within normal range	Treatment naïve patients		
	Compensated liver disease (e.g. no liver cirrhosis, failure		
	or cancer) & APRI \leq 1.2		
	Acceptable haematological and biochemical indices		
	No or controlled type 2 diabetes mellitus and hypertension		

Methods

× Liver function parameters & Viral load

* AST/Platelet Ratio Index (APRI) to assess liver fibrosis

× ELISA to measure serum:

- + Activin-A
- + Activin-B
- + Follistatin
- + IL-6
- + TNF-α

1- Demographic and laboratory characteristics of the patients according to viral genotype and gender of the participants (ND = not done; a = p < 0.05 compared to CM and b = p < 0.05 compared to CF groups).

	Control Male (CM)	Control Female (CF)	Male G1 (MG1)	Male G 4 (MG4)	Female G1 (FG1)	Female G4 (FG4)
	(n = 20)	(n = 20)	(n= 10)	(n= 10)	(n= 10)	(n= 10)
Age (years)	39 ± 5.4	36 ± 8.3	40.3 ± 4	39.2 ± 5.7	37.9 ± 6.2	34.8 ± 8.8
Viral load at diagnosis (IU/mL)	ND	ND	866784.8± 237056.2	945148.7 ± 381181.2	1007458.5 ± 318742.4	988447.8 ± 372327.8
ALP (IU/L)	79.4 ± 21.6	69.2 ± 16.1	125 ± 45.8 ^{a,b}	133.3 ± 35.4 ^{a,b}	130.6 ± 63 ^{a,b}	124 ± 32.3 ^{a,b}
ALT (IU/L)	28 ± 11.2	22.2 ± 5.6	89.3 ± 18.1 ^{a,b}	81.6 ± 19 ^{a,b}	71.9 ± 22.7 ^{a,b}	72.8 ± 20.1 ^{a,b}
AST (IU/L)	21 ± 4.6	22.1 ± 3.1	50.5 ± 14.3 ^{a,b}	54.6 ± 12.5 ^{a,b}	57.8 ± 13.4 ^{a,b}	51.9 ± 15.5 ^{a,b}
Albumin (g/dL)	4.4 ± 0.24	4.5 ± 0.27	3.7 ± 0.5 ^{a,b}	3.6 ± 04 ^{a,b}	3.6 ± 0.4 ^{a,b}	3.7 ± 0.5 ^{a,b}
APRI	0.37 ± 0.07	0.36 ± 0.06	0.78 ± 0.3 ^{a,b}	0.84 ± 0.25 ^{a,b}	0.85 ± 0.29 ^{a,b}	0.89 ± 0.32 ^{a,b}

2- Mean \pm standard deviation of IL-6 and TNF- α in the different study groups (a = p < 0.05 compared to CM, b = p < 0.05 compared to CF; c = p < 0.05 compared to MG1; d = p < 0.05 compared to MG4 and e = p < 0.05 compared to FG4 groups).

	Control Male (CM) (n = 20)	Control Female (CF) (n = 20)	Male G1 (MG1) (n= 10)	Male G 4 (MG4) (n= 10)	Female G1 (FG1) (n= 10)	Female G4 (FG4) (n= 10)
TNF-α (pg/mL)	6.1 ± 1.5	5.8 ± 2.1	121 ± 2.4 ^{a,b}	12.5 ± 1.8 ^{a,b}	11.9 ± 1.6 ^{a,b}	12.3.± 2.1 ^{a,b}
IL-6 (pg/mL)	4.1 ± 1.1	36 ± 1.01	10.6 ± 1.6 ^{a,b}	11 ± 1.9 ^{a,b}	9.9 ± 1.4 ^{a,b}	10.8.2 ± 1.7 ^a

3- Serum Activin-A according to viral genotype (a = p < 0.05 compared to control)

4- Serum Activin-B according to viral genotype (a= p < 0.05 compared to control)

5- Serum follistatin according to viral genotype (a = p < 0.05 compared to control)

6- Correlation of serum activins and follistatin with proinflammatory cytokines, liver function parameters and viral load

Activin-A was strongly and positively correlated with:

- viral load
- APRI
- IL-6 and TNF-α
- negatively with albumin

 Activin-B showed <u>similar correlations</u> to activin-A but only in CHC genotype 1 and it was weaker

No correlation was detected for follistatin

Conclusions

CHC genotype 1 and 4 significantly altered serum activins and follistatin

 The observed significant correlations with viral load, IL-6 & TNF-α suggests that activins are involved in the host immune response to HC

The correlation of activins with liver enzymes and APRI suggest that the dysregulation of activins is associated with liver injury

Future Work

Could serum activins and follistatin be used as non-invasive markers for the diagnosis/staging of liver fibrosis?

Could serum activins and follistatin be used as prognostic markers for the prediction of CHC treatment outcome?

