

Wrocław University of Technology

Novel urease inhibitors for the control of ureolytic

microbial pathogens

Agnieszka Grabowiecka, Ewa Grela, Katarzyna Macegoniuk, Monika Biernat, Łukasz Berlicki, Artur Mucha, Paweł Kafarski

Urease - urea amidohydrolase 3.5.1.5

Bacillus pasteurii, PDBid 1S3T

Benini, S., et al. Structure. 1999. 7 (2): p.205-216

Urease - reaction

 $(k_{cat}/K_m)/k_{uncat} 8.10^{17} M^{-1}$

Regulation of microbial urease

Mechanism	Microorganism
Urea induced	Proteus mirabilis, Proteus vulgaris, Proteus penneri, Providencia rettgeri , Providencia stuartii
Constitutive	Sporosarcina pasteurii, Morganella morganii , Corynebacterium renale, Agrobacterium tumefaciens, Neurospora crassa, Rhizobium leguminosarum
рН	Streptococcus salivarius
Repressive	Klebsiella aerogenes, Pseudomonas fluorescens, Pseudomonas aeruginosa, Alcaligenes eutrophus, Bacillus megaterium , Micrococcus cerificans

Inhibitors for the control of urease

Aminophosphinic analogs of phosphoramidates

Stamatia Vassiliou, Agnieszka Grabowiecka, Paulina Kosikowska, Athanasios Yiotakis, Paweł Kafarski, and Łukasz Berlicki. Design, Synthesis, and Evaluation of Novel Organophosphorus Inhibitors of Bacterial Ureases. J. Med. Chem. 2008, 51, 5736-5744

Ureases.

Modification of P- and N- termini

Katarzyna Macegoniuk, Anna Dziełak, Artur Mucha, and Łukasz Berlicki. *Bis(aminomethyl)phosphinic Acid, a Highly Promising Scaffold for the Development of Bacterial Urease Inhibitors*. ACS Med. Chem. Lett. 2015, 6, 146–150

	Compound nr	11	
1	HO P HO HO	12	
2	HO_O HO ^{_P} N_	13	HO O H $H_2N P N$
3	HO O H	14	$\begin{array}{c} HO O \\ H_2N \mathcal{P} \mathcal{N} \mathcal{N} \end{array}$
4	HO P	15	
5	HO O H HO P N	16	HO O H $H_2N P N$
6	HO O HO P N	17	
7		18	
8	$HO O H_2N P NH_2$	19	
9	$HO O H H_2N V P N $	20	
10	HO, O H ₂ N, P, N,	21	

Proteus mirabilis

Adhesins and 17 fimbrial types - adhesion to uroepithelium and catheters

Swarming motility in rafts - polymicrobial ascending UTI

Agressive iron acquisition - unique proteobactin and enterobactins siderophores

Hemolysin and agglutinin toxins

Serralysin production

Biofilm formation

Horizontal gene transfer for pathogenicity and resistand

Nitrogen metabolism - urease and glutamate dehydrogenase

Chelsie E. Armbruster and Harry L.T. Mobley. Merging mythology and morphology: the multiphaceted lifestyle of *Proteus Mirabilis*. *Nat. Rev. Microbiol*. 2012 10(11): 743-754

Crystallization in infected urine

Unique surface and internal structure of struvite crystals formed by Proteus mirabilis Prywer J, Torzewska A, Płociński T - Urol. Res. (2012)

Przegląd Urologiczny 2010/2 (60)

Proteus mirabilis PCM 543 - urease activity

Indophenol blue assay Colorimetric ammonium quantification

Proteus mirabilis PCM 543 - viability estimation

"MTT"

chromogenic assay of dehydrogenase activity

Fluorescent staining LIVE/DEAD BacLight L-7012

Influence of the studied urease inhibitors upon the whole-cell ureolytic activity and viability of *Proteus mirabilis* PCM543

Compound	Ki [µM]	Percent preserved ureolytic activity	Percent Viability MTT	ΔNH₄⁺ [mM]	ΔΡΟ ₄ -3 [mM]	рН
Untreated culture		100	100	12	-6.5	9.6
HO, O H HO, P N	70±2.2	26±4	30±6	4.0	-3.4	7.4
HO, O HO ^{, P} /N	13±0.8	8±2	36±4	2.2	-0,6	5.6
HO O H	27±0.3	34±6	61±8	5.3	-0.29	7.5
HO,O P N	0.62±0.09	2±0.3	25±3	2.8	-1.4	6.0
HO O H HO P N	0.36±0.10	35±5	74±5	4.7	-3.7	7.4
HO O I HO P N	3.10±0.65	24±6	59±7	4.3	-1.8	7.2
HO, O H HO P N	5.2±0.42	6±3	53±4	3.1	-1.6	6.1

Compound	Ki [µM]	Percent preserved ureolytic Activity	Percent Viability MTT	ΔNH₄⁺ [mM]	ΔΡΟ ₄ -3 [mM]	рН
	82 ±12	37±9	58±12	7.8	-4.6	8.2
	34 ± 8	10±2	63±6	3.3	-1.0	6.3
	24.4 ± 4.1	4±0.5	96±5	2.9	-1.3	6.15
	16.0 ± 1.1	17±5	57±9	3.6	-1.7	6.7
H ₂ N P N	416 ± 50	75±7	98±3	10.0	-5.8	9.2
	25.9 ± 3.0	32±8	65±5	11.5	-4.2	7.9
H₂N , P N	0.202±0.057	4±0.7	40±7	2.5	-0.7	5.7
	778 ± 127	30±4	56±4	9.8	-5.1	8.6
	NI NI	68±11	60±6	9.0	-6.2	8.9

Compound	Ki [µM]	Percent preserved ureolytic Activity	Percent Viability MTT	ΔNH₄⁺ [mM]	ΔΡΟ ₄ -3 [mM]	рН
	NI	96±5	97±8	13.0	-6.3	9.5
	58.3 ± 8.0	92±6	90±7	7.0	-6.9	7.6
	NI	100	99±4	12.0	-6.6	8.5
H HO O H	17.2± 2.5	26±7	76±7	4.5	-2.1	7.3
	24.52± 4.54	89±6	96±6	7.0	-6.7	8.4
AHA	5.7±4	42±6	56±7	9.2	-4.0	7.8

Urine precipitate

Untreated culture

AHA

HO O H₂N P

³¹P - NMR analysis of urine sediment

Urine stability

Kinetics of whole-cell urease

Helicobacter pylori J33

[www.austincc.edu

and acid resistance of Helicobacter pylori urease. Nat Struct Biol 8(6): 505-509

H. pylori J33 urease inhibition

*

screening

Structure	Helicobacter pylori (purified enzyme)		E. coli + pGEM	<i>E. coli</i> + pGEM::ureOP		Helicobacter pylori (whole cells)	
	IC50 (μΜ)	Ki (µM)	IC50 (μM)	IC50 2 h INC (μM)	IC 50 (μΜ)	IC50 2 h INC (μM)	
HO_O H ₂ N_P ^{//} _NH ₂	720,71 ± 70,11	60,98 ± 9,21	NA		<18700*	210 ± 20	
	274,67 ± 20,03	20,86 ± 2,03	879.58 ± 104.83	439.71 ± 60.99	1500 ± 160	550 ± 70	
	248,09 ± 20,03	22,08 ± 2,11	746.45 ±93.68	305.62 ± 43.17	<4200*	480 ± 200	
HO O H $H_2N P' N$	212,79 ± 15,67	27,02 ± 2,070	779.35 ± 99.26	284.09 ± 41.42	1470 ± 210	570 ± 120	
HO O H	5,63 ± 0,317	0,29 ± 0,01	186.36 ±29.59	16.92 ±2.23	1500 ± 200	410 ± 200	\triangleright
HO, O H H ₂ N P N	1506,7 ± 114,15	877,6 ± 24,7	3357.17 ± 568.21	2256.42 ± 350.99	1460 ± 400	640 ± 30	
H HO O H	219,23 ± 18,67	26,14 ± 1,78	1257.64 ± 187.86	269.48 ± 38.51	470 ± 80	210 ± 80	

Structure	Helicobact (purified	ter pylori enzyme)	E. coli + pGEN	l::ureOP	Helicobac (whole	c <i>ter pylori</i> e cells)
	IC50 (μΜ)	Ki (µM)	IC50 (μM)	IC50 2 h INC (µM)	IC 50 (μM)	IC50 2 h INC (μΜ)
	34.25 ± 2.95	9.27 ± 0.35	179.35 ± 32.29	25.06 ±4.86	<9570*	690 ± 150
HO O H HO P N	3.56 ± 0.321	1.03 ± 0.068	759.37 ±106.43	429.72 ± 62.74	600 ± 170	580 ± 80
HO, O H HO ^{_P} N	179.43 ± 12.94	38.29 ± 1.08	163.85 ±24.12	110.28 ±21.13	520 ± 170	170 ± 30
	381.03 ± 31.46	74.26 ± 4.65	-	-	250 ± 2	250 ± 100
HO O H	344.23 ± 17.61	61.64 ± 3.52	573.29 ±76.02	306.22 ±48.38	350 ± 130	510 ± 130

Time of incubation

5	6	7	14	15	18
H O OH OH	H O P OH	H Z A			H N N N N N N N N N N N N N N N N N N N

Nr	Inhibitor
9	
10	
11	
12	
13	
14	
15	
16	

Summary

Aminophosphinates are efficient inhibitors of bacterial urease

They prevent struvite crystallization in artificial urine infection model

H. pylori cells are more resistant to urease inhibition

Studied structures are analogs of aminoacids and urease transition state

Aminophosphinates are hydrolytically stable and resistant to microbial degradation

Aminophosphonates possess chelating properties

Amphiphilic structures affect OM integrity

[bp.blogspot.com]

THANK YOU !