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Ultrashort laser pulses
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Only a few optical cycles under the pulse envelope
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Fourier analysis suggests that short

pulses have broadband spectra
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Where the spectral phase is



Phase relations of ultrashort pulses

Carrier-envelope phase: relation between the carrier wave and the pulse envelope.
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Use of CEP stabilized pulses

• Attosecond physics and high-harmonic generation
• High precision optical frequency and time measurements (by 

stable ”frequency-comb”)
• High precision refractive index measurements
• Calibration of astronomical mirrors



Time-domain pulse distortions

 Initial pulse Case of propagation in vacuum

Effect of first and second order dispersion

Effect of first and

 

0 0 0

2 3
2 3

0 0 0 02 3

d ( , ) 1 d ( , ) 1 d ( , )
( , ) ( , ) ( ) ( ) ( )

d 2 d 6 d
= + ⋅ − + ⋅ − + ⋅ − +K

ω ω ω

φ ω z φ ω z φ ω z
φ ω z φ ω z ω ω ω ω ω ω

ω ω ω

Dispersion of the spectral phase related strongly to the pulse shape:
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Space-domain pulse distortions

Spectral components of the pulse propagate to different directions
• Various spatiotemporal pulse deformations
• Also possible to tailor the pulse length in a controlled way:

stretcher-compressor systems of chirped pulse amplifiers



 

Space-domain pulse distortions

Two different definitions of angular dispersion

• Propagation direction of spectral components
• Spectral phase fronts of spectral components
• Same for plane waves
• Different for Gaussian beams, phase front angular dispersion

slowly diminishes during propagation
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Self-referenced pulse measurements

Fixed mirror

Based on frequency conversion of the autocorrelation signal 

• Typical methods: FROG, SPIDER, WIZZLER, etc.
• Requires nonlinear process
• Usually difficult and iterative algorithms 
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Linear optical methods

Spectrally (and spatially) resolved interferometry

• Based on the combination of a two-beam interferometer and an 
imaging spectrograph

• No need for nonlinear processes
• Easy and straightforward algorithm 
• High precision easily achievable 
• In some cases, it is restricted to measure relative values only
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Refractive index of medium: nmed

• In some cases, it is restricted to measure relative values only



Fourier-transformation algorithm

Evaluation is based on Fourier-domain filtering

• Record the spectrally resolved interferogram
• Keep only the relevant part in the Fourier domain
• Apply inverse Fourier-transformation
• Complex angle of the received spectrum gives the phase
• Phase derivatives calculated from polynomial fitting
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Stationary Phase Point Method

Effective when the sample pulse is much longer than the reference

• Can be used to characterize stretchers/compressors
• Short pulse is only coherent in a small spectral region
• Stationary phase point is where the modulation minimal
• SPP can be scanned through the spectrum by changing the delay 

of the reference pulse
• Delayed between the edges of the spectrum tells the length of 
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the stretched pulse



Spectrally and spatially resolved interferometry

A bit more general description of the SRI

• Based on the combination of a two-beam interferometer and an 
two-dimensional imaging spectrograph

• A small angle between the incoming beams at the spectrograph’s 
slit helps the algorithm and visualizes the spectral phase 

Refractive index of medium: nmed
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Spectrally and spatially resolved interferometry

A bit more general description of the SRI

• Based on the combination of a two-beam interferometer and an 
two-dimensional imaging spectrograph

• A small angle between the incoming beams at the spectrograph’s 
slit helps the algorithm and visualizes the spectral phase 
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2D Fourier-transformation algorithm

The 2D implementation of the Fourier-domain filtering works well

The shape of the spectral phase translates directly to the shape of 
the fringes
(a) First order dispersion only (group delay)
(b) Second order dispersion only (group delay dispersion)
(c) Third order dispersion only (third order dispersion)
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Angular dispersion measurement

Slight modification of the general SSRI setup

• The interfering beams are mirrored (e.g. one more reflection)
• Spectral density of the fringes correspond to the angle between 

the interfering beams
• If the beam has angular dispersion, the mirroring effect doubles 

the spectral dependence of the phase front direction
• The absolute phase front angular dispersion can be measured
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Alternative angular dispersion measurement

Requires a 2D spectrograph, a beam rotation stage and a focusing 

element only

• Focus the beam onto the slit of the spectrograph
• The angle of the spectral components translated to position
• Spectral components with different position means angular 

dispersion
• Spectrograph resolves the beam spectrally
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• Spectrograph resolves the beam spectrally
• The tilt of the spectrogram tells the angular dispersion
• Polarization (beam orientation) rotation needed for full 

characterization
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Alternative 2D angular dispersion measurement

Neither spectrograph, nor beam rotation needed

• Calibrated spectral filtering (e.g. Fabry-Perot etalon) creates well 
defined, separated spectral peaks

• Focusing element translates angle into position
• Spot distances gives the angular dispersion in 2D

pulses
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Phase relations of ultrashort pulses

Carrier-envelope phase: relation between the carrier wave and the pulse envelope.
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Use of CEP stabilized pulses

• Attosecond physics and high-harmonic generation
• High precision optical frequency and time measurements (by 

stable ”frequency-comb”)
• High precision refractive index measurements
• Calibration of astronomical mirrors



Methods to measure CEP drift
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The f-to-2f scheme – the nonlinear way

f 1 = fCEO + n ·frep

f 2 = 2 ·  ( fCEO + m ·frep )

f beat = f2 – f1 = fCEO

RequirementsRequirements::

•• OctaveOctave--broad bandwidthbroad bandwidth

•• 22ndnd harmonic generationharmonic generation
0 2 4 6 8 10 12f0 f2f0

f beat = f2 – f1 = fCEO

φCEO = 2π · f CEO / f rep 

H.R. Telle et al., Appl.Phys. B. 69, 327 (1999).



Multiple-beam interferometer – the linear way

Methods to measure CEP drift

Detection:

Spectrally resolved interfero-
metry of subsequent pulses

Length stabilization:

Spectrograph

Ultrashort
pulse train

Stabilized He-Ne
CCD

Pattern inspection

Length stabilization:

Pattern inspection of a 
frequency-stabilized HeNe

Piezo translator
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Evaluation steps:

(1) Record interference pattern
(2) FFT and filter the spectrum
(3) Inverse FFT
(4) Complex angle gives the

spectral phase difference
(5) Fitting Taylor-series
(6) Calculate CEP = φ0 – GD·ω0

L. Lepetit et al., JOSA B  12, 2467 (1995).

K. Osvay et al., Opt.Lett.  32, 3095 (2007).



Multiple-beam interferometer – the linear way

Methods to measure CEP drift

Detection:

Spectrally resolved interfero-
metry of subsequent pulses

Length stabilization:

Spectrograph

Ultrashort
pulse train

Stabilized He-Ne
CCD

Pattern inspection

•• LinearLinear

•• ScalableScalable

•• Bandwidth independentBandwidth independent

•• UV and far infrared lasersUV and far infrared lasers

•• Applicable to a wide range of lasers:Applicable to a wide range of lasers:

•• (sub(sub--)picosecond lasers)picosecond lasers

Length stabilization:

Pattern inspection of a 
frequency-stabilized HeNe

Piezo translator



Cross-calibration with f-to-2f method
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Sinusoidal intracavity modification of CEP drift
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P. Jojart et al., Opt.Lett.  37, 836 (2012).



• General setup of the 
measurement (Mach-
Zehnder interferometer)

• Method: Spectrally Resolved 
Interferometry (SRI)

Spectrally resolved interferometry – relative CEP change

CEP drift noise in a Ti:S amplifier
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Grating Stretcher

Interferometry (SRI)

• Main source of CEP change: 
Ti:S amplifier crystal

• Measuring the change in CEP 
between non- and amplified 
pulses
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CEO noise and drift measurement

• Effect of crystal cooling on CEP stability:
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• Coolant temperature:     
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Further developments

• Spectrally resolved interferometry is an efficient 

linear optical method of ultrashort pulse measurement

• Most effective if used together with self-referenced 

characterization techniques

Thank you for your attention!Thank you for your attention!
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