About Omics Group

OMICS Group International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS Group hosts over ⁴⁰⁰ leading-edge peer reviewed Open Access Journals and organize over ³⁰⁰ International Conferences annually all over the world. OMICS Publishing Group journals have over ³ million readers and the fame and success of the same can be attributed to the strong editorial board which contains over ³⁰⁰⁰⁰ eminent personalities that ensure ^a rapid, quality and quick review process.

About Omics Group conferences

- OMICS Group signed an agreement with more than ¹⁰⁰⁰ International Societies to make healthcare information Open Access. OMICS Group Conferences make the perfect platform for global networking as it brings together renowned speakers and scientists across the globe to a most exciting and memorable scientific event filled with much enlightening interactive sessions, world class exhibitions and poster presentations
- Omics group has organised ⁵⁰⁰ conferences, workshops and national symposium across the major cities including SanFrancisco,Omaha,Orlado,Rayleigh,SantaClara,Chicago,P hiladelphia,Unitedkingdom,Baltimore,SanAntanio,Dubai,Hyderabad,Bangaluru and Mumbai.

Lasers, Optics and Photonics ²⁰¹⁴ – Philadelphia, USA, Sept. 9, 2014

Linear optical methods as ultrashort pulse diagnostics

A. Börzsönyi, A.P. Kovács, K. Osvay

Department of Optics and Quantum Electronics, University of Szeged, HungaryExtreme Light Infrastructure – Attosecond Light Pulse Source, Hungary CE Optics Research and Development Ltd., Hungary

Ultrashort laser pulses

Only a few optical cycles under the pulse envelope

 $\varphi(\omega, z) = \omega \cdot n(\omega) \cdot z / c$

Fourier analysis suggests that short pulses have broadband spectra

Phase relations of ultrashort pulses

Carrier-envelope phase: relation between the carrier wave and the pulse envelope.

Use of CEP stabilized pulses

- Attosecond physics and high-harmonic generation
- High precision optical frequency and time measurements (by \bullet stable "frequency-comb")
- \bullet **High precision refractive index measurements**
- •Calibration of astronomical mirrors

Time-domain pulse distortions

Dispersion of the spectral phase related strongly to the pulse shape:

Propagation time

Space-domain pulse distortions

Spectral components of the pulse propagate to different directions

- •Various spatiotemporal pulse deformations
- \bullet Also possible to tailor the pulse length in a controlled way: stretcher-compressor systems of chirped pulse amplifier s

Space-domain pulse distortions

Two different definitions of angular dispersion

- **Propagation direction of spectral components** •
- \bullet Spectral phase fronts of spectral components
- \bullet **Same for plane waves**
- \bullet Different for Gaussian beams, phase front angular dispersionslowly diminishes during propagation

(a) Plane waves

(b) Gaussian beams

Self-referenced pulse measurements

Based on frequency conversion of the autocorrelation signal

- •Typical methods: FROG, SPIDER, WIZZLER, etc.
- \bullet Requires nonlinear process
- \bullet Usually difficult and iterative algorithms

Linear optical methods

Spectrally (and spatially) resolved interferometry

- Based on the combination of a two-beam interferometer and an •imaging spectrograph
- No need for nonlinear processes \bullet
- \bullet Easy and straightforward algorithm
- \bullet High precision easily achievable
- •In some cases, it is restricted to measure relative values only

Fourier-transformation algorithm

Evaluation is based on Fourier-domain filtering

- **•** Record the spectrally resolved interferogram •
- Keep only the relevant part in the Fourier domain •
- •Apply inverse Fourier-transformation
- Complex angle of the received spectrum gives the phase \bullet
- \bullet Phase derivatives calculated from polynomial fitting

Stationary Phase Point Method

Effective when the sample pulse is much longer than the reference

- •Can be used to characterize stretchers/compressors
- \bullet Short pulse is only coherent in a small spectral region
- Stationary phase point is where the modulation minimal •
- \bullet SPP can be scanned through the spectrum by changing the delay of the reference pulse
- Delayed between the edges of the spectrum tells the length of •the stretched pulse

Spectrally and spatially resolved interferometry

A bit more general description of the SRI

- • Based on the combination of a two-beam interferometer and an two-dimensional imaging spectrograph
- A small angle between the incoming beams at the spectrograph's •slit helps the algorithm and visualizes the spectral phase

Spectrally and spatially resolved interferometry

A bit more general description of the SRI

- • Based on the combination of a two-beam interferometer and an two-dimensional imaging spectrograph
- A small angle between the incoming beams at the spectrograph's \bullet slit helps the algorithm and visualizes the spectral phase

2D Fourier-transformation algorithm

The 2D implementation of the Fourier-domain filtering works well

The shape of the spectral phase translates directly to the shape of the fringes

- (a) First order dispersion only (group delay)
- (b) Second order dispersion only (group delay dispersion)
- (c) Third order dispersion only (third order dispersion)

Angular dispersion measurement

Slight modification of the general SSRI setup

- The interfering beams are mirrored (e.g. one more reflection) •
- • Spectral density of the fringes correspond to the angle between the interfering beams
- If the beam has angular dispersion, the mirroring effect doubles the spectral dependence of the phase front direction
- The absolute phase front angular dispersion can be measured•

Alternative angular dispersion measurement

Requires a 2D spectrograph, a beam rotation stage and a focusing element only

- Focus the beam onto the slit of the spectrograph•
- The angle of the spectral components translated to position \bullet
- **•** Spectral components with different position means angular \bullet dispersion
- **•** Spectrograph resolves the beam spectrally •
- The tilt of the spectrogram tells the angular dispersion \bullet
- Polarization (beam orientation) rotation needed for full \bullet characterization

Alternative 2D angular dispersion measurement

Neither spectrograph, nor beam rotation needed

- Calibrated spectral filtering (e.g. Fabry-Perot etalon) creates well \bullet defined, separated spectral peaks
- \bullet Focusing element translates angle into position
- **•** Spot distances gives the angular dispersion in 2D \bullet

Phase relations of ultrashort pulses

Carrier-envelope phase: relation between the carrier wave and the pulse envelope.

Use of CEP stabilized pulses

- Attosecond physics and high-harmonic generation
- High precision optical frequency and time measurements (by \bullet stable "frequency-comb")
- \bullet **High precision refractive index measurements**
- •Calibration of astronomical mirrors

Methods to measure CEP drift

The f-to-2f scheme – the nonlinear way

 $f_1 = f_{\text{CEO}} + \mathbf{n} \cdot f_{\text{rep}}$ $f_2 = 2 \cdot (f_{\text{CEO}} + \text{m} \cdot f_{\text{rep}})$ $f_{\text{beat}} = f_2$ **–** $f_1 = f_{\text{CEO}}$ $\varphi_{\text{CEO}} = 2\pi \cdot f_{\text{CEO}}/f_{\text{rep}}$

Requirements:

- Octave-broad bandwidth
- ²nd harmonic generation

H.R. Telle et al., Appl.Phys. B. 69, 327 (1999).

Methods to measure CEP driftMultiple-beam interferometer – the linear way Detection:**Pattern inspection** Spectrally resolved interferometry of subsequent pulses **CCD Ultrashort** Stabilized He-Ne Λ ⁻ pulse train**Spectrograph** Length stabilization:Pattern inspection of a Piezo translatorfrequency-stabilized HeNeK. Osvay et al., Opt.Lett. 32, 3095 (2007).

Evaluation steps:

- (1) Record interference pattern
- (2) FFT and filter the spectrum
- (3) Inverse FFT
- (4) Complex angle gives the spectral phase difference
- (5) Fitting Taylor-series
- (6) Calculate CEP = ϕ_0 GD· ω_0

Methods to measure CEP driftMultiple-beam interferometer – the linear way Detection:**Pattern inspection** Spectrally resolved interferometry of subsequent pulses **CCD Ultrashort** Stabilized He-Ne Λ pulse train**Spectrograph** Length stabilization:Pattern inspection of a Piezo translatorfrequency-stabilized HeNe Linear \bullet **Scalable** \bullet **• Bandwidth independent** \bullet UV and far infrared lasers \bullet • Applicable to a wide range of lasers: • (sub-)picosecond lasers •

Cross-calibration with f-to-2f method

Sinusoidal intracavity modification of CEP drift

Random intracavity modification of CEP drift

P. Jojart et al., Opt.Lett. 37, 836 (2012).

CEP drift noise in a Ti:S amplifier

Spectrally resolved interferometry – relative CEP change

- • General setup of the measurement (Mach-Zehnder interferometer)
- • Method: Spectrally Resolved Interferometry (SRI)
- • Main source of CEP change: Ti:S amplifier crystal
- • Measuring the change in CEP between non- and amplified pulses

CEO noise and drift measurement

• Effect of crystal cooling on CEP stability:

•Coolant temperature:

Temperature values are related to the cooling water

Further developments

- Spectrally resolved interferometry is an efficient linear optical method of ultrashort pulse measurement
- Most effective if used together with self-referenced

characterization techniques

Thank you for your attention!

Acknowledgements:

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the frameworks of TÁMOP 4.2.4. A/2-11-1-2012- ⁰⁰⁰¹ 'National Excellence Program' and TÁMOP 4.2.2.A- $11/1/KONV-2012-0060 -$ "Pulse lasers for use in materials science and biophotonics" and "TÁMOP-4.2.2.C- $11/1/KONV-2012-0010$ – "Supercomputer, the national virtual laboratory".

Európai Unió Európai Szociális

Alan

SZÉCHENYI

BEFEKTETÉS A JÖVŐBE

Let Us Meet Again

We welcome all to our future group conferences of Omics group internationalPlease visit:www.omicsgroup.com www.Conferenceseries.comhttp://optics.conferenceseries.com/