PRODUCTIVE FACADES: POTENTIAL ENERGY AND FOOD HARVESTING IN SINGAPORE'S RESIDENTIAL BUILDINGS

Abel Tablada Assist Prof. National University Singapore

Renewable Resources and Architecture: M. 'Ammar Bin Mohamad Malek, Ng Zhi Li Sean, Wang Yigeng, Tay Lee Kuan Roy, 2015

http://www.greenfuture.sg/2015/12/16/theparis-agreement-what-it-means-for-singaporeand-what-more-can-we-do/

Dec 2015 by Eugene Tay

energy forgrowth

National Energy Policy Report

A bloom. A flower unfolds in vibrancy. Radiating in an infinite myriad of colours and possibilities. It represents the dynamic role that energy plays in sustaining Singapore's economic growth and improving the lives of Singaporeans. This report chronicles our efforts at formulating a holistic, flexible and forward-looking national energy policy framework to secure *Energy for Growth* for Singapore.

https://www.mti.gov.sg/ResearchRoom/Documents/app.mti.gov.sg/data/pages/885/doc/NEPR%202007.pdf

http://www.greenfuture.sg/2015/12/16/theparis-agreement-what-it-means-for-singaporeand-what-more-can-we-do/ Dec 2015 by Eugene Tay

Learn More: Download and interact with data at data.footprintnetwork.org.

COUNTRIES RANKED BY ECOLOGICAL FOOTPRINT PER CAPITA (in global hectares)

(9) Estonia 7	7.0
(10) Belgium (6.9
(1) Singapore (6.8
(12) Finland (6.7
(13) Sweden (6.5
(14) Latvia (6.5
(15) Kazakhstan (6.5
(16) Bahrain (6.4
	(9)Estonia(10)Belgium(11)Singapore(12)Finland(13)Sweden(14)Latvia(15)Kazakhstan(16)Bahrain

Human Development Index and Ecological Footprint (2013)

Human Development Index and Ecological Footprint (2013)

NUS National University of Singapore

Ecocity World Summit, Melbourne July 2017. FROM PRODUCTIVE FACADES TO PRODUCTIVE CITIES. Dr Abel TABLADA. Dept. of Archit., School of Design and Envir., NUS

Solar Evergy 139 (2016) 757-769

Source State

Sunlight availability and potential food and energy self-sufficiency in tropical generic residential districts

Abel Tablada*, Xi Zhao

Department of Architecture, School of Design and Environment, National University of Singapore, Singapore

ARTICLE INFO

ABSTRACT

Article history: Received 17 May 2016 Received in revised form 23 August 2016 Accepted 22 October 2016 Available online 2 November 2016

Keywards: Solar access BIPV Urban farming Low-carbon neighbourhoods Urban resilience A transition to a solar-based carbon neutral economy is crucial to reduce the overall ecological footprint and greenhouse gas (GHG) emissions while providing new housing for the growing urban population worldwide. One of the key measures to achieve such reductions as a way to mitigate and adapt to climate change is to increase food and energy self-sufficiency in residential areas. The objective of this study is to explore the potential self-sufficiency in terms of food and energy in generic residential districts in Singapore and Southeast Asia. Computational tools are employed to obtain quantifiable indicators based on sunlight availability. A series of building typologies and urban forms was created as abstractions from actual residential developments in Singapore (1.3°N). In total, 57 cases were assessed in terms of sunlight availability and the impact of three density and geometry parameters; plot ratio, site coverage and building height were considered. Results from selected cases were compared to Hanoi's conditions (21*N). The results show that the indicators having the higher impact on the food and energy self-sufficiency are plot ratio and building height. The cases with the lowest plot ratio (PR < 1.9) achieved food selfsufficiency when a hybrid higher-yield farming method was applied. Regarding energy harvesting, the cases with the lowest building height (<42 m) achieve energy self-sufficiency due to the maximum exposed area with PV per number of residents. In low-latitude regions, solar access is more evenly distributed among all facade orientations than in higher latitudes, therefore providing all facade orientations with food and energy harvesting potential. Food and energy self-sufficiency in equatorial regions is more heavily influenced by the available farming and PV area in relation to the total population than by the reduction of sunlight availability due to building typology and morphology.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

According to UN Habitat, new housing should be provided for 2.25 billion people by 2030 (UN-Habitat, 2012). This includes the 1.43 billion people expected to migrate to urban areas and those living in precarious conditions who will need decent and affordable houses. A large percentage of this amount corresponds to tropical and subtropical regions. Only by an urgent but well-planned transition from fossil fuels to a solar-based carbon neutral economy can these huge challenges be surmounted while reducing the overall ecological footprint and greenhouse gas (GHC) emissions.

The urbanisation process is accelerating along the tropical belt, especially in Southeast Asia (SEA). In Singapore, although all the population is already urbanised, the need to build higher density residential districts to accommodate the growing population in

 Corresponding author at: Department of Architecture, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117 566, Singapore.

E-mail addresses: abel@nus.edu.sg, abeltablada@yahoo.com (A. Tablada)

http://dx.doi.org/10.1016/j.solener.2016.10.041 0038-092X/© 2016 Elsevier Ltd. All rights reserved. the land-scarce Estate-Island obliges the demolition of relatively old housing estates and the construction of new ones. In other tropical and subtropical regions, the land used to build new residential districts is, most of the time, located in the peri-urban areas in which agricultural activities are foremost. This poses tremendous stress on food production and food availability. On the one hand, food demand is increased due to the growing population with higher income level and, on the other hand, fertile land around the cities is dramatically reduced. In the case of Singapore, new residential developments have already reduced the farming areas considerably, which has increased its food dependency and compromised future food security.

It is estimated that the yield increase rate of the main crops will not be sufficient to cope with the growing demand by 2050 due to the increase of population, the dietary shift towards meat and dairy, especially in Asia, and biofuel consumption (Tilman et al., 2011; Ray et al., 2013), In addition, the increase of land for agriculture to cope with the growing demand could directly affect natural ecosystems like tropical forests. Therefore, using building Impact of urban form on sunlight availability for urban farming in Asian cities at different latitudes

> Abel Tablada, PhD Assistant Professor abel@nus.edu.sg

POTENTIAL USE OF BUILDING FACADES FOR FOOD AND ENERGY HARVESTING IN SINGAPORE

Abel Tablada and Shashwat

Department of Architecture National University of Singapore (NUS)

II. Productivity potential at urban level 19/50

28.6

-54.5-

Point block ____ _ _ _ _ _ ______ ______ пп пп ______ _____ nnnnhnnnnnnndnnn пп n d ood hп noobooooooodoooo hп nnnnhnnnnnnndnnn _____ _____ _ D d _____ Ьo o d _____ _____ aaaabaaaaaaaaadaaaa nnnnhnnnnnnndnnn _____ _____ _____ hп _ o d пп hnnn nnnd пп ______ ______ ______ Slab block ____ ____ ____ ____ -40 **Contemporary block** 2323 2323 22.25 2323 2323 2323 2323 2323

> 2323 2323 2323 2323

2322323232323232323232323232323232323232
23

REPRESERVERSER FRAMERICA PROVIDE A CONTRACTOR PROVIDA A CONTRACTOR PROVID

5353	2323	23
5353	2323	2322323232323232323232323232323232323232
23223	2323	232232222222222222222222222222222222222
2323	2323	23
5353	2323	23
2323	2323	23
5353	2323	***********************
2323	2323	23
5353	2323	232222222222222222222222222222222222222
2323	2323	***********************
53533	2323	2322323232323232323232323232323232323232
53523	2323	232232222222222222222222222222222222222
53533	2323	23
5353	2323	***************************************

20/50 II. Productivity potential at urban level

^{22/50} II. Productivity potential at urban level

^{23/50} II. Productivity potential at urban level

- Food self-sufficiency is achieved with PR ≤ 1.9 if a hybrid farming method is applied (conventional + vertical).
- Energy self-sufficiency is achieved for building height (< 42 m, < 14 storeys, PR < 3) due to the maximum exposed area with PV per amount of residents.

24/50 II. Productivity potential at urban level

- Food self-sufficiency is achieved with $PR \le 1.9$ if a hybrid farming method is applied (conventional + vertical).
- Energy self-sufficiency is achieved for building height (< 42 m, < 14 storeys, PR < 3) due to the maximum exposed area with PV per amount of residents.
- Sunlight availability is sufficient for food and energy harvesting on all façade orientations.
- For current typical New Towns in Singapore, food and energy self-sufficiency could reach about 60% and 80% respectively.

To make recommendations for three categories of envelope use based on facade sunlight distribution:

1) only BIPV,

(2) combination of BIPV and farming

(3) only farming or solar collectors.

	AF	AG	AH	AL	AJ	AK	AL	AM	AN	AO	AP	AQ	AB	AS	AT	AU	AV	AV	AX	AY	AZ	BA	BB	B(
1	515	54	71	1E+08	0.613	385	515	54	71	1E+08	0.618	440	515	54	71	1E+08	0.622	495	515	54	66	9E+07	0.542	
2	507.5	54	71	1E+08	0.616	385	507.5	54	71	1E+08	0.616	440	507.5	54	71	1E+08	0.622	495	507.5	54	65	9E+07	0.536	
3	500	54	71	1E+08	0.613	385	500	54	71	1E+08	0.619	440	500	54	71	1E+08	0.622	495	500	54	65	9E+07	0.541	
4	515	42	68	9E+07	0.558	385	515	42	69	9E+07	0.565	440	515	42	69	9E+07	0.568	495	515	42	62	8E+07	0.488	
5	507.5	42	68	9E+07	0.552	385	507.5	42	68	9E+07	0.555	440	507.5	42	68	9E+07	0.559	495	507.5	42	62	8E+07	0.478	
6	500	42	68	9E+07	0.557	385	500	42	68	9E+07	0.56	440	500	42	68	9E+07	0.559	495	500	42	62	8E+07	0.484	
7	515	30	65	8E+07	0.498	385	515	30	65	8E+07	0.502	440	515	30	65	8E+07	0.502	495	515	30	59	7E+07	0.422	
8	507.5	30	65	8E+07	0.493	385	507.5	30	65	8E+07	0.493	440	507.5	30	65	8E+07	0.497	495	507.5	30	59	7E+07	0.425	
9	500	30	65	8E+07	0.5	385	500	30	65	8E+07	0.498	440	500	30	65	8E+07	0.499	495	500	30	59	7E+07	0.425	
10	515	18	63	8E+07	0.454	385	515	18	62	7E+07	0.452	440	515	18	63	7E+07	0.453	495	515	18	56	6E+07	0.377	
11	507.5	18	61	7E+07	0.44	385	507.5	18	62	7E+07	0.445	440	507.5	18	62	7E+07	0.446	495	507.5	18	55	6E+07	0.373	
12	500	18	62	7E+07	0.445	385	500	18	62	7E+07	0.447	440	500	18	63	7E+07	0.451	495	500	18	55	6E+07	0.375	
13	515	6	59	7E+07	0.408	385	515	6	59	7E+07	0.407	440	515	6	59	7E+07	0.408	495	515	6	50	5E+07	0.331	
14	507.5	6	58	7E+07	0.401	385	507.5	6	59	7E+07	0.405	440	507.5	6	59	7E+07	0.405	495	507.5	6	48	5E+07	0.323	
15	500	6	59	7E+07	0.406	385	500	6	59	7E+07	0.409	440	500	6	59	7E+07	0.405	495	500	6	51	6E+07	0.336	
16					0						0						0						0	
17	460	54	71	1E+08	0.612	385	460	54	71	1E+08	0.617	440	460	54	72	1E+08	0.623	495	460	54	65	9E+07	0.539	
18	452.5	54	71	1E+08	0.613	385	452.5	54	71	1E+08	0.614	440	452.5	54	71	1E+08	0.621	495	452.5	54	65	9E+07	0.535	
19	445	54	71	1E+08	0.613	385	445	54	71	1E+08	0.617	440	445	54	71	1E+08	0.621	495	445	54	65	9E+07	0.54	
20	460	42	68	9E+07	0.557	385	460	42	68	9E+07	0.563	440	460	42	69	9E+07	0.568	495	460	42	62	8E+07	0.486	
21	452.5	42	68	9E+07	0.551	385	452.5	42	68	9E+07	0.551	440	452.5	42	68	9E+07	0.554	495	452.5	42	62	8E+07	0.479	
22	445	42	68	9E+07	0.556	385	445	42	68	9E+07	0.559	440	445	42	69	9E+07	0.565	495	445	42	62	8E+07	0.482	
23	460	30	65	8E+07	0.501	385	460	30	65	8E+07	0.503	440	460	30	65	8E+07	0.502	495	460	30	59	7E+07	0.428	
24	452.5	30	64	8E+07	0.49	385	452.5	30	65	8E+07	0.498	440	452.5	30	65	8E+07	0.494	495	452.5	30	58	7E+07	0.418	
25	445	30	65	8E+07	0.495	385	445	30	65	8E+07	0.5	440	445	30	65	8E+07	0.5	495	445	30	59	7E+07	0.424	
26	460	18	62	7E+07	0.451	385	460	18	63	8E+07	0.455	440	460	18	63	8E+07	0.453	495	460	18	56	6E+07	0.377	
27	452.5	18	62	7E+07	0.443	385	452.5	18	61	7E+07	0.442	440	452.5	18	61	7E+07	0.441	495	452.5	18	55	6E+07	0.368	
28	445	18	62	7E+07	0.447	385	445	18	62	7E+07	0.448	440	445	18	63	8E+07	0.454	495	445	18	56	6E+07	0.375	
29	460	6	59	7E+07	0.407	385	460	6	59	7E+07	0.406	440	460	6	59	7E+07	0.41	495	460	6	50	5E+07	0.331	
30	452.5	6	58	7E+07	0.396	385	452.5	6	58	7E+07	0.4	440	452.5	6	59	7E+07	0.404	495	452.5	6	49	5E+07	0.328	
31	445	6	59	7E+07	0.407	385	445	6	59	7E+07	0.41	440	445	6	59	7E+07	0.409	495	445	6	50	6E+07	0.334	
32					0						0						0						0	
33	405	54	71	1E+08	0.616	385	405	54	71	1E+08	0.62	440	405	54	71	1E+08	0.621	495	405	54	65	9E+07	0.535	
34	397.5	54	71	1E+08	0.611	385	397.5	54	71	1E+08	0.615	440	397.5	54	71	1E+08	0.621	495	397.5	54	65	9E+07	0.539	
35	390	54	71	1E+08	0.612	385	390	54	71	1E+08	0.617	440	390	54	71	1E+08	0.623	495	390	54	65	9E+07	0.54	
36	405	42	68	9E+07	0.559	385	405	42	68	9E+07	0.564	440	405	42	68	9E+07	0.564	495	405	42	62	8E+07	0.484	
37	397.5	42	68	9E+07	0.552	385	397.5	42	68	9E+07	0.553	440	397.5	42	68	9E+07	0.557	495	397.5	42	62	8E+07	0.479	

• Food thresholds

Daylight Autonomy (DA) required sunlight (RS) Optimal RS = 80% > 10klx Minimum RS = 40% > 10klx

Energy thresholds
 Incident irradiance
 PV > 800 kWh/m²
 Solar collector > 400 kWh/m²

W

Results (Food)

- No facade and typology achieve the threshold requirement (RS=80%). All facades and sensor positions achieve RS > 40%.
- North and south facades show minor differences (N 1-4% higher than S).
- Higher differences were obtained between E & W facades which are more sensitive to sensor height position

S

30 m 18 m 6 m

40

Ν

Results (Energy)

- N & S facades are only suitable on the top positions for the denser cases. It may allow the whole facade for the least dense morphologies (PR = 1.3).
- All cases achieve higher values than 400 kWh/m², hence suitable for the installation of solar collectors on those facade locations not suitable for PV panels.

Recommendations and partial conclusions

• There is high potential of food and energy harvesting on building facades in low latitudes.

However, only densities lower than PR=3 allow the incidence of irradiance values above the threshold for energy harvesting

• Farming and solar collectors can be installed on all facades at any height.

However, it is recommended to be installed only on those facade areas where PV panels are not feasible based on irradiance threshold.

• PV panels on the top section of all facades and farming and solar collectors on the remaining sections.

Cases	Farming 2 nd		PV (>800)	Solar	
	category	N	S	E	W	collector
P1	100%	100%	33%	0%	100%	100%
Р3	100%	50%	33%	0%	75%	100%
Ρ5	100%	25%	25%	0%	50%	100%
S1	100%	100%	50%	0%	100%	100%
S 3	100%	33%	33%	0%	100%	100%
S5	100%	33%	33%	0%	100%	100%
C1	100%	100%	100%	0%	100%	100%
С3	100%	50%	0%	0%	100%	100%
C5	100%	33%	0%	0%	33%	100%

30/50 IV. Productive facades / Design development

Research team Director: Prof. Stephen Lau Abel Tablada, Siu Kit Lau, Chao Yuan and Shinya Okuda

Collaborators/ sponsors Hugh Tan, Dept of Biological

Sciences, NUS.

Thomas Reindl and Veronika Shabunko, Solar Energy Research Institute of Singapore (SERIS)

Vesna Kosoric, Huang Huajing and Ian Chaplin from Dept of Architecture, NUS.

City Development Limited

NUS-CDL Tropical Technologies (T²) Lab

IV. Productive facades / Design development

	1. Initial definition of PSF components												
	Defini	tion of P\	/ system		D	efinition of	Food F	Planters		Definition of openings			
Crop type		Baseline DLI (for daily survival)	Optimum DLI (for daily growth)	DLI Category	Light Duration Requirement	Spacing	Growing Period	Root Depths	Container	Temperature	Water	Planting Method	
Bayam (Chinese spinach or red amaranth)		0.87	33.95	Very high light	Long-day crop Min 4 hour daylight	4/ft2 300mm 200-250mm height	20-25days <mark>4-5weeks</mark> 40days	Shallow(450m-600mm.) Usually 1 ft, up to 5ft	Depth: can be less than 30cm 1-gallon or larger container	10-15°C	Keep soil consistently moist throughout the growing season	well-drained, nutrient-rich soil	
Cai xin (Chinese flowering cabbage)	N	0.85	24.51	High light Strong sun		250-300mm h: 100-400mm 100-200mm H: 200-300mm 150-200mm	<u>30-35days</u> 30-50days	within a depth of 120mm	Depth: 150mm-200mm			light sands to clay loams, but prefers fertile, well-drained soils	
Chinese cabbage (Napa cabbage)		0.77	17.35	Moderate light Full sun to part shade	Long-day crop produces more leaves, bigger leaves and a higher biomass under long day conditions at least 4 hours of sunlight is ideal	250-300mm	30-35days 8-12wks after sowing	Shallow	Depth: at least 200mm	13-21°C	Needs much water during the whole growth period During head formation, 1 to 1 ½ inches of water per week is needed Frequent light sprinklings with small- bore sprinklers should be used	high yields on sandy loam	
Kailan (Chinese kale)		1.5	47.22	Very high light Strong sun		250-300mm H:250-300mm 150-200mm	40-45days 60-70days 8-12weeks 55-60days	Shallow				Rich soil	
Kang kong (Water spinach or convolvulus)	Ŵ	0.67	19.9	Full sun or Moderate light	at least 4 hours of sunlight is ideal	150-300mm 200mm H:up to 300mm	18-22days 50-60days 3-4weeks 60days from sowing 2-3week another round harvest	Shallow	at least 8 inches in depth and diameter	20-30°C	needs much more water than most other vegetable crops. For aquatic culture after planting the land is flooded to 3-5 cm in depth and the water is keyf flowing continuously. In moist soil culture, irrigation should take place every 1-2 days for high quality shotos' riarifall is low.	grows in water or on moist soil	
Lettuce		0.84	14.51	Moderate light Tolerating some shade light shading in warm temperatures well-lit but shaded position	Long-day crop Min 4 hour daylight 3 hour direct sunlight	250-300mm Height: 4-8 in. 10-14 in spacing <u>18-30 cm</u>	40-45days 40-50days 70-85days 55-70days (from seed) <u>30days</u>	Shallow(450m-600mm.)	1 gal container can be as shallow as 6 in.	<u>15-22°C</u> cool climate plant	Hydropouk; 20 ± 3.8 L/kg/y Conventional: 250 ± 5.1 L/kg/y 20-30cm/year Don't allow soil profile to become depleted	Media bed/NFT/DWC	
Pak Choy (Chinese chard)		0.83	39.96	Very high light	at least 4 hours of direct sunlight	250-300mm 200mm H:150-450mm	30-35days 45-75days	Shallow	Depth: can be less than 30cm Depth:150-200mm	15-20°C	During head formation, 1 to 1 ½ inches of water per week is needed Frequent light sprinklings with small- hore sprinklers should be used		
Cabbage			<u>6.4-11.2</u>	Partial sun	Long-day crop Day neutral	2/ft2 250-300mm 600-800mm	90-120days 60-90days 45-70days (from transplanting)	Shallow(450m-600mm.) Majority in upper 12 in.	Usually too large for container, but early maturing and dwarf cultivars can be used. Depth: can be less than 30cm One transplant per 5-gallon container. Or with small varieties, one plant per gallon container.	15-25°C (growth stops at >25°C)	380 to 500 mm during the season	Media bed	

^{34/50} IV. Productive facades / Design development

Design alternatives

gradient pv

2 pv panels

tilt angle

2 pv panels

protection

3 pv panels

^{36/50} IV. Productive facades / Design development

Defining assessment criteria for façade optimization through the multiple criteria decision analysis (MCDA)

The MCDA VIKOR method is applied in order to provide a comprehensive evaluation and selection of the optimal design alternatives.

The VIKOR method relies on the weight coefficients of the criteria functions to model the preferred structure of a design strategy.

Criteria categories	Criteria groups	function	Individual criteria functions	fi	Units	ω	Ext.
		Daylight	Daylight Autonomy (indoors)	f1	%	0.05	Max
		(0.1)	Energy on lighting (indoors)	f ₂	KWh	0.05	Min
	Functio	Thermal performance (0.1)	Envelope Thermal Transfer Value (ETTV)	f ₃	(W/m²)	0.1	Min
	nal	Natural	Ventilation rate	f4	m³/s	0.05	Max
Architectural	quality	Ventilation (0.1)	Wind speed	f5	m/s	0.05	Max
quality		Views quality (0.1)	Angle of view/opening	f ₆	degrees	0.1	Max
		Usability & Acceptance (0.1)	Accessibility	f7	qualitative (1-5)	0.05	Max
			Residents' acceptance	f ₈	qualitative (1-5)	0.05	Max
	Aesthet	ic quality (0.1)	Aesthetic quality of the element	f9	qualitative (1-5)	0.1	Max
	Constru	ctive quality	Components' weight	f ₁₀	kg	0.05	Min
	(0.1)		Ease of assembly/disassembly	f ₁₁	qualitative (1-5)	0.05	Max
Production	Energy	yield (0.1)	PV electricity generation per year	f ₁₂	KWh	0.1	Max
performance	Food yie	eld (0.1)	Total value of produced food	f ₁₃	SGD	0.1	Max
Financial			Installation costs	f ₁₄	SGD	0.05	Min
performance	Costs (0	.1)	Maintenance costs per year	f ₁₅	SGD	0.05	Min

1V. Productive facades / Design development

^{39/50} IV. Productive facades / Design development

Parametric simulation

Image of the Rhino model and the Grasshopper / Ladybug algorithm for the parametric calculation of building performance indicators and sunlight access.

Design variants

Design variants (total 12,180)

Example: Test-run of the simulation

43/50 IV. Productive facades / Design development

Simulation results

44/50 IV. Productive facades / Design development

Simulation results

Survey to residents and experts

16. I would like to live in the building

o Without solar panels and vertical farming on the		17. If I could have a mini vertical farming on my floor, the perfect position of the garden would be on my
facade	L STAL MARLE MARLE & L STAL MARLE MARLE &	• Window
 With solar panels on the facade 		
		o Comdor
 With both solar panels and vertical farming on the facade 		o Both
naudue		window and corridor

Extract of the survey to be conducted to residents of HDB buildings in order to obtain some of the criteria functions related to acceptance, accessibility and aesthetics.

43/50 IV. Productive facades / Design development

VIKOR: multiple criteria decision analysis (MCDA)

48/50 IV. Productive facades / Design development

49/50 IV. Productive facades / Design development

50/50 Experiment results: to be reported next time!

Thank you very much Questions and suggestions E-mail: abel@nus.edu.sg