International Summit on Past and Present Systems of Green Chemistry Philadelphia, August 26th 2014

IMPROVING THE ADSORPTIVE PROPERTIES OF BIOMATERIALS FOR THE REMOVAL OF HEAVY METALS

Dr. Abel E. Navarro

Science Department, Borough of Manhattan Community College, CUNY

PROBLEM

Heavy Metals

- Present in human activities, from food to metalmechanic and paints.
- Are not biodegradable
- Can be bioaccumulated and transferred to humans through the food chain.
- Copper, Zinc, Cobalt, and Iron. Most toxic: Lead, Cadmium, Mercury and Chromium.

BIOREMEDIATION

- Use of biological techniques to remove pollutants from air, soil and water.
- Bioaccumulation: Living organism Biosorption: Doad biomag
 - **Biosorption: Dead biomass**

BIOSORPTION

- Use of non-living biomasses to passively remove pollutants
- Driven by physico-chemical processes
- Algae, crustacean shells, eggshell, nutshell, fruit peels, fruit seeds, TEALEAVES.
- Fast kinetics (saturation time).
- Potential recyclability of waste

ADVANTAGES

- Competitive performance.
 - Pollutant selectivity.
 - Cost effectiveness.
 - Pollutant recovery.
 - No sludge generation.

OUR ADSORBENTS

- Domestic waste found in the kitchen:
- Why? High content of functional organic groups such as alcohol (fiber and carbohydrates), carboxylic acids and amines (structural polysaccharides).
- Why? Easy preparation and massive collection.
- Widespread use of green tea as a hot/cold drink. Massive collection from green tea industries (i.e. Arizona and other bottled tea-based drinks).

ALGINATE BEADS

- Alginate and other polymers gelify in contact with divalent cations (Calcium ions).
- High porosity and stability.
- Encapsulating matrix

METHODOLOGY

- Teabags were boiled, dried, stored and used in adsorption experiments.
- Solutions of pollutants were prepared and taken to proper pH, mass of adsorbent, dye concentrations, salinity, and crowding.

METHODOLOGY

- Duplicate experiments were carried out at room temperature and shaken during 24h.
- Metal concentrations were measure by the color of the complex with Zincon.
- Adsorbents were characterized using Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Infrared Spectroscopy (FTIR), X-ray Energy Dispersion Spectroscopy (EDS). Surface and porosity were determined by colorimetric and redox experiments.

METHODOLOGY

Characterization of the Adsorbents

TGA: Temperature resistance and presence of volatile compounds

Surface Area and Porosity: Compared to Activated carbon (SA+ 1000 – 2500 cm²/g

ADSORBENT	Surface Area (m²/g)	Micropore Volume (cm³/g)	Total Pore Volume (cm ³ /g)
AB	228	0.056	0.137
СМ	1063	0.397	0.578
СТ	231	0.149	0.529
DGT	274	0.219	0.592
GT	2736	0.692	1.106
PGT	221	0.058	0.411
РМ	946	0.892	0.961

ΡM

CM

GT

DGT

X-RAY EDS – ADSORPTION

PM + Co

PM + Cu

pH Effect

- Ionization of adsorbent's surface and metals (aquo- and hydroxocomplexes.
- Higher pH promotes higher adsorption.

Mass Effect

- Minimize amount of adsorbent.
- Higher adsorption promotes formation of aggregates.

 Isotherms were modeled by Langmuir, Freundlich, Dubinin-Radushkevich and Temkin theories.

Isotherm Theory	Equation		
Langmuir	$q = \frac{q_{max} \times b \times C_{eq}}{1 + b \times C_{eq}}$		
Freundlich	$q = k_F \ge C_{eq}^{1/n}$		
Dubinin-Radushkevich	$q_{e=} q_{DR} \ge \exp(-K_{DR} \ge \varepsilon^2)$		
Temkin	$q_e = \frac{RT}{b_t} \ln (a_t \ge C_{eq})$		

Adsorption Isotherm	Parameters	AB	ст
Langmuir	q _{max} (mg/g)	79.87	16.28
	b (L/mg)	0.0162	0.045
	p-value	< 0.0001	< 0.0001
	R²	0.984	0.930
Freundlich	k _F (L/g)	2.045	3.142
	n	1.349	3.199
	p-value	0.00062	< 0.0001
	R²	0.959	0.982
Dubinin-Radushkevich	q _{DR} (mg/g)	46.84	14.59
	B x 10 ⁻⁴ (mol ² .J ²)	0.235	0.892
	E (J/mol)	146	75
	p-value	< 0.0001	0.00186
	R²	0.969	0.823
Temkin	а _т	0.291	0.406
	b _⊤ x 10 ⁻⁴ (J/mol)	0.312	1.104
	p-value	0.00055	< 0.0001
	R²	0.924	0.987

Salinity Effect:

- Decreases adsorption due to competition for the adsorption sites.
- Higher the charge, the stronger the effect.

- Mild acidic conditions were enough to desorb both dyes.
- Competition of hydronium for active sites.
- Water has weak desorbing properties.

X-RAY EDS – DESORPTION (HCl treatment)

GT

GT + Cu

GT – 5 cycles

- Challenge in Remediation: Real Conditions.
- Crowding Agent: Ficoll, Polyethylene glycol.
- Steric Hindrance, access to active sites

FUTURE WORK

- Mixtures of metals: Cu + Zn
- Explore other more toxic metals, proteins, PAHs, emerging pollutants.
- Column studies
- Chemical modification of adsorbents
- Characterization: Elemental Analysis, Potentiometric Titration, BET, AFM.

NEW DIRECTIONS

Time (min)

Emerging Pollutants – Antibiotic Enrofloxacin

pH effect and kinetics

Continuous-flow experiment: Chamomile as an adsorbent of Cu(II) ions. Conditions: 1.8g of CM, flow 7mL/min, pH 6, 100ppm Cu(II).

NEW DIRECTIONS

NEW DIRECTIONS

Enhance adsorption affinity by the incorporation of more reactive functional groups: Carboxyl, thiol, sulfonic

ADSORBENT	С _{соон} (mmol/g)	ADSORBENT	С _{соон} (mmol/g)	ADSORBENT	С _{соон} (mmol/g)
СМ	1.36	GT	1.72	РМ	1.4
тсм	1.48	TGT	1.88	ТРМ	2
SCM	1.76	SGT	1.92	SPM	1.48
ССМ	1.08	CGT	1.72	СРМ	1.36

Table: Acidic Group content (mmol/g) of all the adsorbents

Adsorption of heavy metals onto raw and modified adsorbents: Copper (red), Zinc (blue), and Cobalt (green) at pH 6, using 50mg of adsorbent in a 100 ppm metal solution.

CONCLUSIONS

- Tealeaves have proven to be promising adsorbents for model metals and other pollutants. They also serve as scaffold for chemical modifications.
- Characterization studies report advantages of tealeaves and alginate beads as an alternative adsorbent.
- pH has a strong effect on the adsorption. Likewise, salinity and crowding effects have a negative impact.
- Carboxylation and sulfonation improve the adsorption of metals.

REFERENCES

- Jung, S., Naidoo, M., Shairzai, S., Navarro, AE. On the adsorption of a cationic dye on spent tea leaves. Book Chapter in: Urban Water II, Edited by S. Mambretti and CA. Brebbia, WIT Press, 2014, Volume 139.
- Zahir H, Naidoo M, Kostadinova R, Ortiz K, Sun M, Navarro AE. Decolorization of hairdye by lignocellulosic waste materials from contaminated waters. Front. Environ. Sci. (2014) 2:28. doi:10.3389/fenvs.2014.00028
- Navarro, AE., Chang, E., Chang, P., Yoon, SY., Manrique, A. Separation of Dyes from aqueous systems by magnetic alginate beads. *Trends in Chromatog.*, 2013, 8, 31-41.
- Kim, T., Yang, D., Kim, J., Musaev, H., Navarro, AE. Comparative adsorption of highly porous and raw adsorbents for the elimination of copper (II) ions from wastewaters. *Trends in Chromatog.*, 2013, 8, 97-108.
- Diaz, C., Jacinto, C., Medina, R., Navarro, AE., Cuizano, N., Llanos, B. Study of the biosorption of chromium (VI) on cross linked quaternary chitosan for their application on the bioremediation of wastewaters. *Rev. Soc. Quím. Perú*, 2013, 79(4): 304-318.

Acknowledgements

Group Members:

Md Emran Masud Lianhua Shen Minyeong Hong Humoyun Musaev Paul Isaac Jenish Karmacharya Patrycja Lai Natalia Fernandez

Funding:

CSTEP, LSAMP, BMCC Faculty Development Grant, PSC-CUNY, MCC-Puerto Rico (EDS facilities)