About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

Internationa

About OMICS Group Conferences

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

3rd International Conference and Exhibition on

Mechanical & Aerospace Engineering

October 05-07, 2015 San Francisco, USA

YUZUNCU YIL UNIVERSITY VAN/TURKEY

A COMPARATIVE STUDY ON OPTIMIZATION OF MACHINING PARAMETERS BY TURNING NICKEL BASED SUPER ALLOYS ACCORDING TO TAGUCHI METHOD

ABDULLAH ALTIN

SAN FRANSISCO -2015

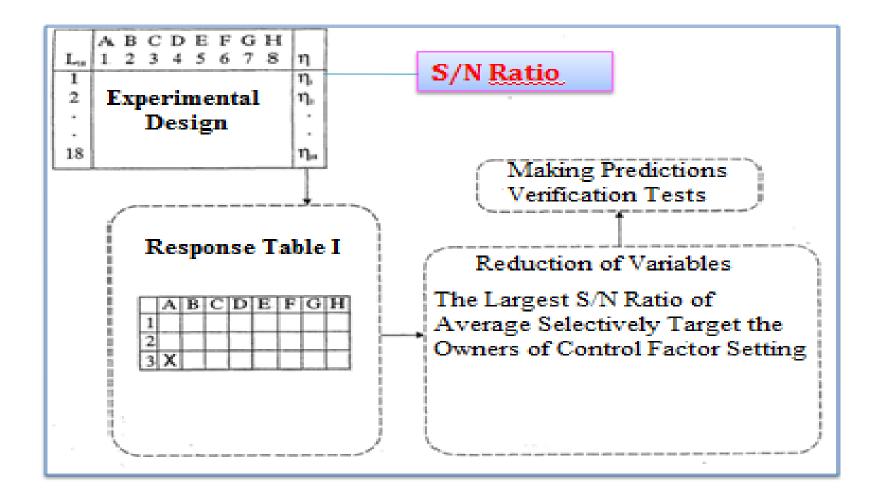
CONTENT

- Intent
- Literature
- Taguchi Method
- Experimental Study
- Numerical Analysis
- Results and Discussion
- Conclusions
- References

TAGUCHI METHOD

Taguchi, is reached as a result of combining three tools.

To analyze and evaluate the numerical results


Orthogonal experimental design

The S/N (signal / noise) ratio and ANOVA (analysis of variance)

Stages of Taguchi Method

TAGUCHI METHOD-I

TAGUCHI METHOD-II

					Con	trol fa	actors									
Test	A	В	С	D	Ε	F	G	Н	1	J	к	Ŀ	mage	factor	5	
No.	1	2	3	4	5	6	7	8	9	10	11	N,	N ₂	N ₃	η	ÿ
1	1.	- 1	1	1	1	1	1	1	1	1	1	00	00	00	η_1	ÿ,
2	1	1	1	1	. 1	2	2	2	2	2	2	00	00	00		-0
3	1	1	2	2	2	1	1	1	2	2	2					
4	1	2	1	2	2	1	2	2	1	1	2					
5	1	2	2	1	2	2	1	2	1	2	1					
6	1	2	2	2	1	2	2	1	2	1	1			52		
7	2	1	2	2	1	1	2	2	1	2	1					
8	2	1	2	1	2	2	2	1	1	1	2					
9	2	1	1	2	2	2	1	2	2	1	1					
10	2	2	2	2	1	1	1	2	2	1	2					
11	2	2	1	1	1	2	1	1	1	2	2					
12	2	2	1	1	2	1	2	1	2	2	1	00	00	00		

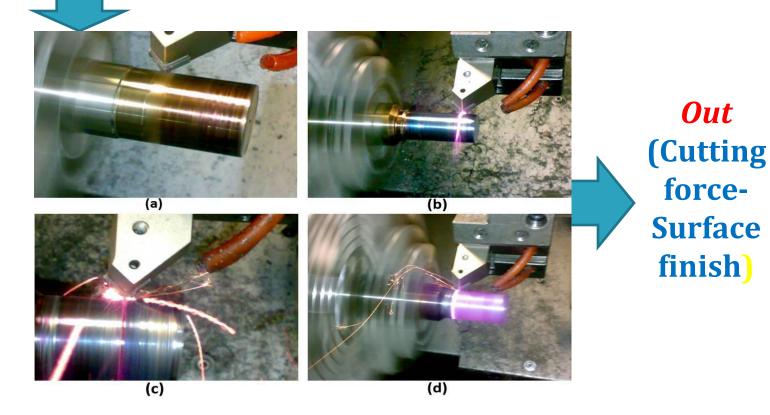
PERFORMANCE CHARACTERISTICS OF TAGUCHI

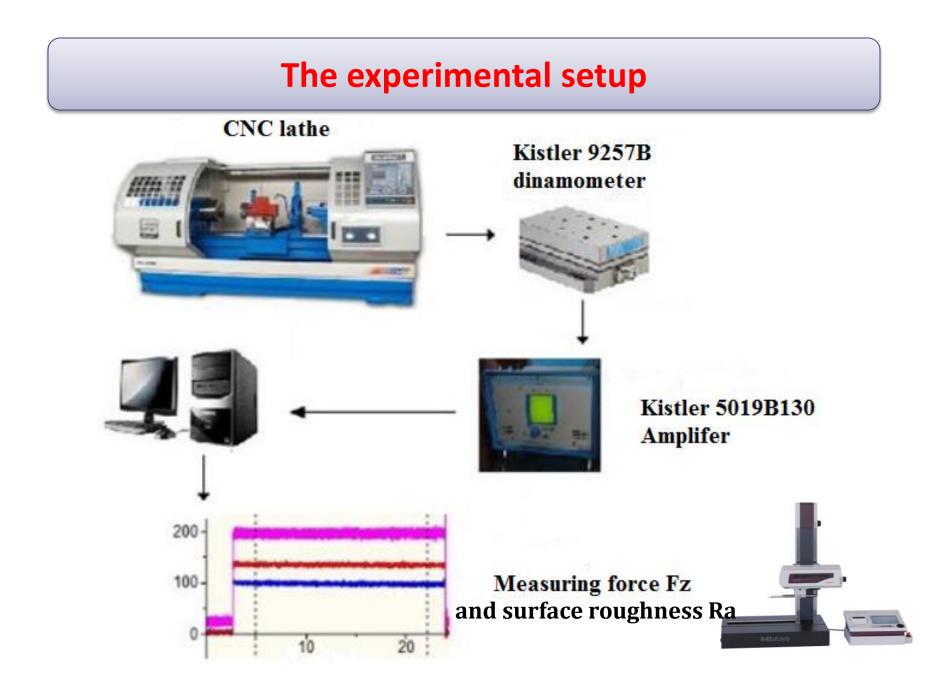
Taguchi method, the signal/noise (S/N) ratio depends on the performance characteristics of the three basic uses.

S/N_{SB}
$$\eta = -10\log\left[\frac{1}{n}\sum_{i=1}^{n}y_{i}^{2}\right]$$
 Smaller is better

S/N_{LB}
$$\eta = -10\log\left[\frac{1}{n}\sum_{i=1}^{n}\frac{1}{y_i^2}\right]$$
 Bigger is better

$$S/N_{NB}\eta = 10\log\left(\frac{\overline{y}}{s^2 y}\right)$$


Nominal is better


An Experimental Study

- Method
 Material
 Orthogonal design
 Cutting conditions
 Cutting force and surface roughness measurement
 - Taguchi Analysis

METHOD

- Control factors
- V: Cutting speed
- f: Feedrate
 - : Cutting tool

MATERIALS

□ Inconel 625 is a nickel based super alloy with excellent mechanical properties, corrosion resistance and withstand high temperatures in the aviation industry which need to be used in the manufacture of airframe and engine parts. Non-magnetic and is very resistant to many corrosive environments.

□Hastelloy X is a nickel-chromium-iron-molybdenum alloy developed for high temperature applications. Hastelloy X is a face-centered cubic (FCC), nickel-based and corrosion-resistant superalloy. The Hastelloy is derived from the strengthening particles, Ni2 (Mo, Cr), which is formed after the two-step agehardening heat treatment process.

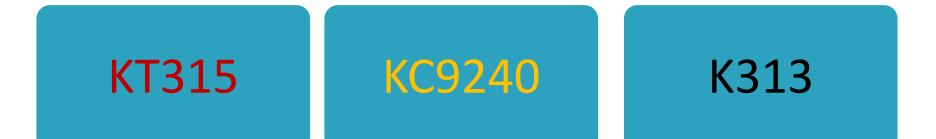
Chemical composition

Elements	Inconel 625	Hastelloy X
Carbon (C)		1
Silicon (Si)	0.1	0.08
Chrome (Cr)	22	20.5-23
Nickel (Ni) + Cobalt (Co)	58,08	51
Molybdenum (Mo)	9,1	8-10
Manganese (Mn)	11	0.8
Phosphorus (P)	0.015	
Sulfur (S)		0.01
Iron (Fe)	4.73	17-20
Cooper (Cu)		
Niobyum (Ni) +Tantal (Ta)	5.325	
Aluminium		
Titanium (Ti)	0.33	

CUTTING CONDITIONS

		Parameters	
Levels	F (mm/rev)	V (m/min)	Tool
	(A)	(B)	(C)
1	0.1	65	K313
2	0.15	80	KT315
3		100	KC9240

The experimental setup Orthogonal design L_{18 2x (3)}*


Exp. Num.	Feedrate	Cutting speed	Tools
	mm/rev	mm/min	
	(A)	(B)	(C)
1	1	1	1
2	1	1	2
3	1	1	3
4	1	2	1
5	1	2	2
6	1	2	3
7	1	3	1
8	1	3	2
9	1	3	3
10	2	1	1
11	2	1	2
12	2	1	3
13	2	2	1
14	2	2	2
15	2	2	3
16	2	3	1
17	2	3	2
18	2	3	3

Types of cutting tools

Cutting Tools

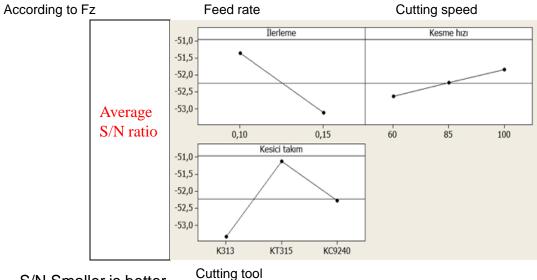
Covered tools

Uncovered

S/N ratio analysis

		S,	/N _{SB}	η = - 1($\operatorname{Dlog}\left[\frac{1}{n}\sum_{i=1}^{n}\right]$	\mathbf{y}_{i}^{2}					
Exp.	Feedrate	Cutting	Tools		Hastelloy X			Inconel 625			
Num.	mm/rev	speed		Ra	Ra Fz I	Fz (S/N)	Ra	Ra (S/N	Fz	Fz (S/N)	
		mm/min		(µm)	(S/N) (N)		(µm)		(N)		
1	0.10	65	K313	1.70	-4.6090 691 -	-56.7896	1.452	-3.2393	695	-56.8397	
2	0.10	65	KT315	1.605	-4.1095 622 -	-55.8758	3.179	-10.0458	560	-54.9638	
3	0.10	65	KC9240	1.455	-3.2573 715 -	57.0861	0.725	-2.7932	505	-54.0658	
4	0.10	80	K313	1.599	-4.0770 655 -	-56.3248	1.691	-4.5629	705	-56.9638	
5	0.10	80	KT315	1.410	-2.9844 601 -	-55.5775	1.235	-1.8333	550	-54.8073	
6	0.10	80	KC9240	1.368	-2.7217 694 -	-56.8272	0.576	4.7916	508	-54.1173	
7	0.10	100	K313	1.717	-4.6954 658 -	-56.3645	1.001	-0.0087	695	-56.8397	
8	0.10	100	KT315	1.667	-4.4387 598 -	-55.5340	1.027	-0.2314	568	-55.0870	
9	0.10	100	KC9240	0.755	-2.4411 538 -	-54.6156	0.755	-2.4411	483	-53.6789	
10	0.15	65	K313	3.649	-11.243 919 -	-59.2663	0.958	-0.3727	875	-58.8402	
11	0,15	65	KT315	2.669	-8.5269 863 -	-58.7202	.785	-2.102	785	-57.8974	
12	0.15	65	KC9240	1.492	-3.4754 966 -	-59.6995	1.580	-3.9731	691	-56.7896	
13	0.15	80	K313	3.462	-10.786 901 -	-59.0945	1.307	-2.3255	876	-58.8501	
14	0.15	80	KT315	1.880	-5.4832 855 -	-58.6393	1.533	-3.7108	707	-56.9884	
15	0.15	80	KC9240	1.405	-2.9535 696 -	-56.8522	1.476	-3.3817	555	-54.8859	
16	0.15	100	K313	3.137	-9.9303 854 -	-58.6292	0.812	-1.8088	887	-58.9585	
17	0.15	100	KT315	3.132	-9.9164 830	-58.3816	0.950	-0.4455	724	-57.1948	
18	0.15	100	KC9240	1.085	-0.7086 697 -	-56.8647	1.380	-2.7976	610	-56.5853	

THE AVERAGE ANSWER SHEET (Ra)


		Average of levels									
Parameter s	In	conel 62	5	Hastelloy X							
	I	II	III	I	II	III					
A Feedrate (F)	-10.58	-5.046		-3.703	-7.002						
B Cutting speed (V)	-6.889	-8.169	-9.593	-5.870	-4.834	-5.355					
C Tools	-7.284	-7.941	-8.227	-7.567	-5.909	-2.592					

THE AVERAGE ANSWER SHEET (Fx)

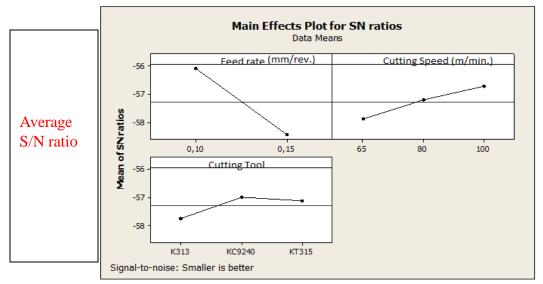
		Average of levels									
Kesme Şartları	Inc	onel 62	25	Hastelloy X							
	I	II	III	I	II	III					
A Feedrate (F)	-54.097	-55.889		-56.110	-58.460						
B Cutting speed (V)	-55.637	-55.004	-54.338	-57.058	-57.219	-56.731					
C Tools	-56.176	-53.945	-56.591	-57.744	-57.121	-56.990					

ANOVA ANALYSIS of INCONEL 625(Fz)

Taguchi Optimization		Predict	Correction experiment				
Level		A1B3C2			A1B3C2		
Cutting conditions	0,10	100	KT315	0,10	100	KT315	
Surfage roughness (Ra)		765					
S/N ratio		-57.717		-57,673			

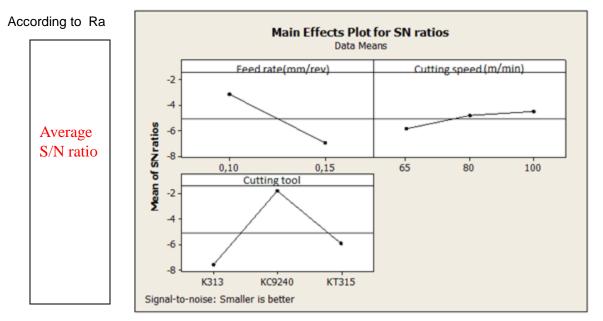
S/N Smaller is better

ANOVA ANALYSIS of INCONEL 625(Ra)


.

Taguchi Optimization			Predict		Correc	ction exp	oeriment
Level			A1B3C3	A1B3C3			
Cutting conditions	5	0,10	100	KC940	0,10	100	KC9240
Surfage roughness (Ra)	5		0.280			0.179	
S/N ratio			-11.350			-14.942	2
According to Ra'	Average S/N ratio	Feed rate	İlerleme	Cutting speed	esme hızı		
S/N Smaller is b	etter	Cutti	ng tool				

ANOVA ANALYSIS Hastelloy X (Fx)


Taguchi Optimization	Predict			Correction experiment				
Level	A1B3C2			A1B3C2				
Cutting conditions	0.10 100 KC9240 (0.10	100	KC9240			
Cutting force	562			598				
S/N ratio		-54.99	1	-55.53				

According to Fz

ANOVA ANALYSIS Hastelloy X (Ra)

Taguchi Optimization	Predict			Correction experiment				
Level	A1B3C2			A1B3C2				
Cutting conditions	0.10 100 KC9240		0.10	100	KC9240			
Surface roughness	1.050			1.667				
S/N ratio		-0.423		-4.43				

Hastelloy X (Ra)

Parameters	Degree of freedom (Dof)	Sum of squares	Means of squares	F	P (p<0.05)	Effect of parameter (%)
Feed rate	1	4.1424	4.1424	56.56	0.002	33.15
Cutting speed	2	0.18817	0.09408	1.28	0.371	1.51
Cutting tool	2	5.04646	2.52323	34.45	0.003	40.38
Error	12	0.29294	0.07323			2.34
Total	17	12.4974				100

Hastelloy X (Fz)

Parameters	Degree of freedom (Dof)	Sum of squares	Means of squares	F	P (p<0.05)	Effect of parameter (%)
Feed rate	1	181805	181805	57.75	0.002	65.99
Cutting speed	2	30700	15350	4.88	0.085	11.14
Cutting tool	2	13213	6607	2.1	0.238	4.80
Error	12	12592	3148			4.57
Total	17	275517				100

INCONEL 625 (Fz)

Parameters	Degree of freedom (Dof)	Sum of squares	Means of squares	F	P (p<0.05)
Feed rate	1	14.457	14.4571	24.44	34.02
Cutting speed	2	5.066	2.533	4.28	11.92
Cutting tool	2	15.872	7.9361	13.42	37.35
Error	12	7.098	0.5915		16.70
Total	17	42.294			100.00

INCONEL 625(Ra)

Parameters	Degree of freedom (Dof)	Sum of squares	Means of squares	F	P (p<0.05)
Feed rate	1	138,24289	138,2429	28,4011	56,13
Cutting speed	2	46,80772	23,4039	4,8082	19,00
Cutting tool	2	2,80624	1,4031	0,2883	01,13
Error	12	58,41029	4,8675		23,71
Total	17	246,26714			100,00

CONCLUSIONS

• It was observed that while cutting tool (37.35 %) and feed rate (34.02%) has higher effect on cutting force in Inconel 625, the feed rate (65,99%) and cutting speed (11,14) has higher effect on cutting force in Hastelloy X.

• While feed rate (56.13%) and cutting speed (19.00%) has higher effect on average surface roughness in Inconel 625, cutting tool (40,38%), and feedrate (33,15%) has higher effect on average surface roughness in Hastelloy X.

• Array of parameters by the Taguchi method, the optimization of cutting parameters has been shown an efficient methodology.

• In turning operations average surface roughness and cutting forces can be controlled by three factors (cutting tool, cutting speed and feed rate).

• Using results of analysis of variance (ANOVA) and signal-to-noise (S/N) ratio, effects of parameters on both average surface roughness and cutting forces were statistically investigated according to the "the smaller is better" approach.

REFERENCES

- 1 P. Ganesan, C.M. Renteria, J.R. Crum, Verstile corrosion resistance of Inconel 625 in various aqueous and chemical processing environments, TMSPittsburgh, Pennsylvania, USA, 1991.
- 2 Special Metals Corporation Products, INCONEL[®] alloy 625, www.specialmetals.com/products.
- 3 H. Bohm, K. Ehrlich, K.H. Kramer, Metall 24 (1970) 139–144.
- H.K. Kohl, K. Peng, J. Nucl. Mater. 101 (1981) 243–250.
- W.E. Quist, R. Taggart, D.G. Polonis, Metall. Trans. 2 (1971) 825–832.
- M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Metall. Trans. A 19 (1988) 453–465.
- 7 T. Charles, Int. J. Press. Vessels Piping 59 (1994) 41–49.
- V. Shankar, K. Bhanu Sankar Rao, S.L. Mannan, J. Nucl. Mater. 288 (2001) 222–232.
- 9 L.E. Shoemaker, in: E.A. Loria (Ed.), Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, PA, 2005, pp. 409–418.
- G.H. Gessinger, Powder Metallurgy of Superalloys, Butterworth & Co., London, 1984, pp. 3–15.
- 11 J.J. Valencia, J. Spirko, R. Schmees, in: E.A. Loria (Ed.), Superalloys 718, 625, 706 and Various Derivates, TMS, Warrendale, PA, 1997, pp. 753–762.
 - 12 S. Sun, M. Brandt, M.S. Dargusch, Characteristics of cutting forces and chi formation in machining of titanium alloys, International Journal of Machine Tools and Manufacture 49 (2009) 561–568.
 - 13 S. Ranganath, A.B. Campbell, D.W. Gorkiewicz, A model to calibrate and predict forces in machining with honed cutting tools or inserts, International Journal of Machine Tools & Manufacture 47 (2007) 820–840.
- 14 E.S. Topal, C. Cogun, A cutting force induced error elimination method for turning operations, Journal of Materials Processing Technology 170 (2005) 192–203.
- 15 Montgomery DC. Design and analysis of experiments. 4th ed. New York: Wiley; 1997.
- 16 Yavaşkan, M., Taptık, Y ve Urgen, M., Deney tasarımı yontemi ile matkap uclarında performans optimizasyonu, İTÜ Dergisi/d, Cilt 3, no 6, 2004, 117-128
- 17 Nalbant, M., H. Gokkaya, G. Sur.Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials and Design 28 (2007): 1379–1385
- 18 Yang H, Tarng Y.S. Design optimization of cutting parameters for turning operations based on the Taguchi method. J Mater Process
- 19 R. K. Roy, A primer on the Taguchi method / Ranjit K. Roy, Van Nostrand Reinhold, New York, (1990)
- 20 G. Tosun, Statistical analysis of process parameters in drilling of AL/SIC P metal matrix composite, International Journal of Advanced Manufacturing Technology, 55 (2011) 5–8, 477–485

For Your Attention

- Dr. Abdullah ALTIN
- aaltin@gmail.com
- VAN/TURKEY