

THE UNIVERSITY OF ADELAIDE AUSTRALIA

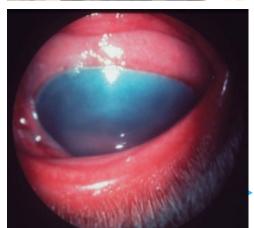
Friday, August 12, 2016

Subclinical mastitis caused by *Mycoplasma*-like bacteria in in dairy cattle in South Australia

Abd Al-Bar Al-Farha a1642419@adelaide.edu.au

Mycoplasma

- Smallest bacteria
- Mollicutes
- Cattle-associated
 - M. bovis
 - M. californicum
 - M. bovigenitalium
 - M. alkalescence
 - M. bovoculi
 - M. mycoides mycoides
 - M. dispar
 - Acholeplasma spp.
 - Ureaplasma diversum



Disorders in cattle^{3,4}

- Pneumonia
- Mastitis
- **Arthritis**
- Keratoconjuctivitis
- Otitis media
- Urogenital tract disorders

Issues with Mycoplasma

- Slow growing bacteria
- Special culture requirements
- ➤ Not part of routine mastitis culture
 - >Do not grow on routine culture media
- Difficulties in survival

Mastitis

- ➤ Clinical: acute, subacute and chronic
- > sub-clinical
- Mycoplasma mastitis, undifferentiated mastitis
- > SCC
- **➤ Milk production**

Economic impacts

- **► US= US\$ 108 million annually**
- ➤ Europe= US\$ 130 million annually

http://www.overthecounter.cc/training_modules_view.asp?module=Cattle&id=69

Aims

- Identify and isolate Mycoplasma species by microscopic culture method
- * Examine the effects of *Mycoplasma*-like organisms compared to other mastitis pathogens on the test-day SCC and milk production
- * Develop and compare between different PCR detection methods for Mycoplasma
- * Evaluate the survival of *Mycoplasma* under different freezing conditions

Materials and methods

Source of isolates

Single farm from Mt Gambier

> High SCC

High rate of treatment

failure

Materials and methods

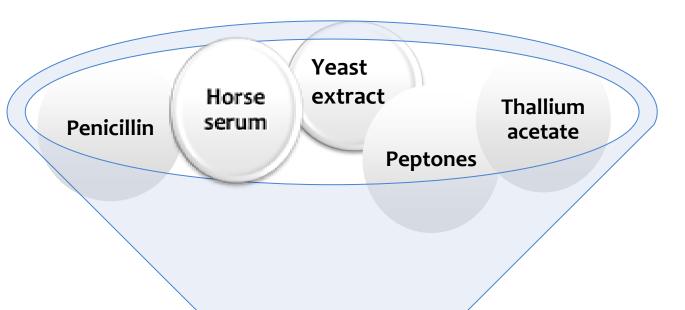
- ➤ Milk samples
 - Cow level
 - ➤ 2 occasions
 February 2015
 September 2015

Faculty of Sciences, School of Animal and Veterinary Sciences

Sampled cows 368

Mycoplasma mastitis

Other pathogens


Materials and methods

- **Enrichment**
- Anaerobically for 5 days
- **Culture**
- Anaerobically 7-10 days

Molecular detection

THE UNIVERSITY OF ADELAIDE AUSTRALIA

 Development of PCR Mycoplasma in milk & culture samples

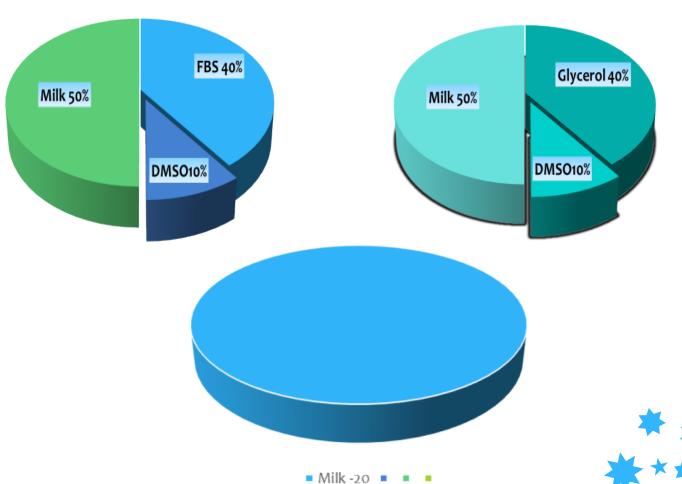
Run all samples

2

- Differentiate between Mycoplasma spp.
- 16S rRNA gene sequencing

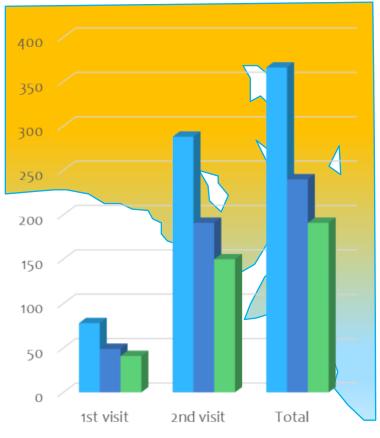
 Development of RT-PCR

3



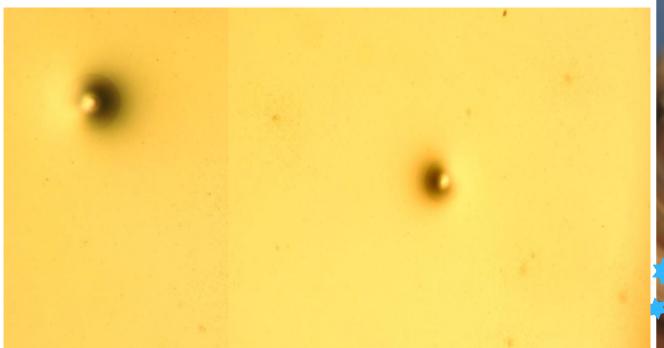
Faculty of Sciences, School of Animal and Veterinary Sciences

Freezing Techniques


Results

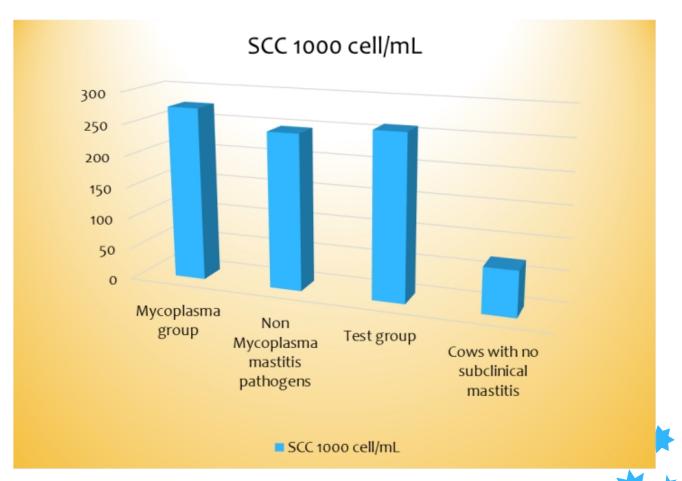
Life Impact The University of Adelaide Slide 14

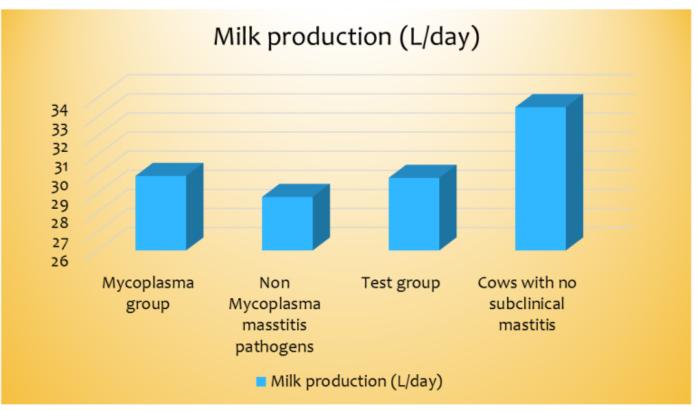
Culture & PCR results


- Samples collected
- PCR Positive
- Culture Positive

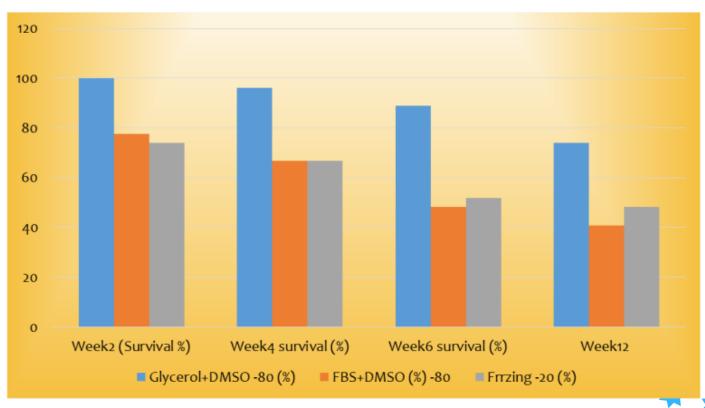
Mycoplasma colonies

Typical fried egg appearance of colony of *Mycoplasma*-like organisms under the stereomicroscope (10 x magnification)



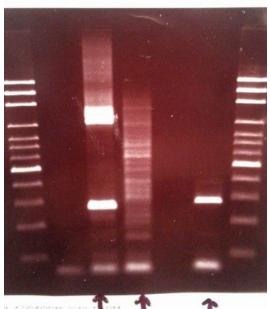

Somatic cell counts SCC

Milk production

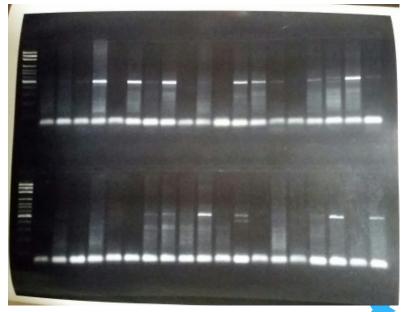


THE UNIVERSITY OF ADELAIDE AUSTRALIA

Survivability Results



Molecular results

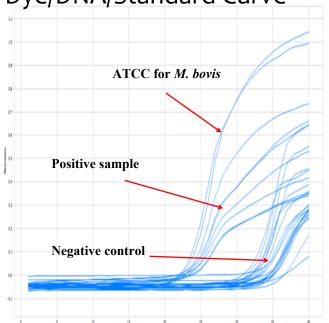

Conventional PCR Universal 16S rRNA

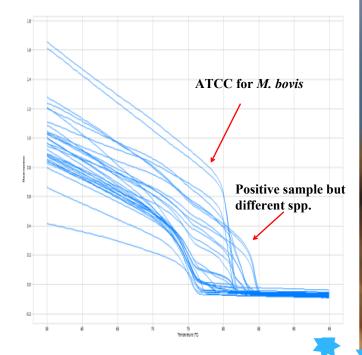
Chemidoc 2015-04-17 15hr 14m

cPCR using Acholeplasma specific primer

-ve sample + control Positive sample

Life Impact The University of Adelaide





Real time PCR

Real Time PCR
Quantification/DNA Binding
Dye/DNA/Standard Curve

Component Melt Data

Sequencing

n=16 9/16 → M. bovis 7/16 → Acholeplasma laidlawii

		score	score	cover	value		
	Acholeplasma laidlawii strain NEG175 16S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	KP742977.1
	Acholeplasma laidlawii strain PG-8A 16S ribosomal RNA gene, complete sequence	793	793	100%	0.0	100%	NR 074448.1
	Uncultured bacterium clone Act a2 M01 16S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	JX146014.1
	Acholeplasma laidlawii strain Algen 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	JN935890.1
	Acholeplasma laidlawii strain BN1-JA1 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	JN935888.1
	Acholeplasma laidlawii strain KHS 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	JN935887.1
E	Acholeplasma laidlawii strain Concha-2 16S ribosomal RNA gene, partial sequence; 16S-23S ribosomal RNA intergenic spacer, complete sequence; and 23S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	JN935875.1
	Acholeplasma laidlawii strain NBRC 14400 16S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	NR 113658.
	Acholeplasma laidlawii strain K5R01 16S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	HQ661833.1
	Acholeplasma laidlawii strain R3 6 16S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	HQ661832.1
	Acholeplasma laidlawii strain CIRG/Alw-1 16S ribosomal RNA gene, partial sequence	793	793	100%	0.0	100%	FJ655561.1
	Acholeplasma laidlawii strain TTB 103 16S ribosomal RNA gene and 16S-23S ribosomal RNA intergenic spacer, partial sequence	793	793	100%	0.0	100%	FJ590758.1
	Acholeplasma laidlawii strain Haig 179L 16S ribosomal RNA gene and 16S-23S ribosomal RNA intergenic spacer, partial sequence	793	793	100%	0.0	100%	FJ226570.1
	Acholeplasma laidlawii strain SRCD 16S ribosomal RNA gene and 16S-23S ribosomal RNA intergenic spacer, partial sequence	793	793	100%	0.0	100%	FJ226559.1
	Acholeplasma laidlawii strain REP 16S ribosomal RNA gene and 16S-23S ribosomal RNA intergenic spacer, partial sequence	793	793	100%	0.0	100%	EU925161.1
	Acholeplasma laidlawii PG-8A, complete genome	793	1586	100%	0.0	100%	CP000896.1
	A laidlawii 16S ribosomal RNA small subunit gene	793	793	100%	0.0	100%	M23932.1
	Acholeplasma laidlawii strain FJ-NP 16S ribosomal RNA gene, partial sequence	787	787	100%	0.0	99%	KU870649.1
	Uncultured bacterium clone NTS002Powerb6 13634 16S ribosomal RNA gene, partial sequence	787	787	100%	0.0	99%	JQ379532.2
	Acholeplasma sp. ZJ2005 16S ribosomal RNA gene, partial sequence	787	787	100%	0.0	99%	GU985440.1
	Acholeplasma laidlawii strain PG8 16S ribosomal RNA gene, partial sequence	771	771	100%	0.0	99%	NR 025961.
	Acholeplasma laidlawii 16S rRNA gene Gisco AnyConnect Secure Mobility Cl VPN Credentials required to connect.	767	767	98%	0.0	99%	AM073014.1

Conclusion

- Awareness for the importance of Mycoplasma mastitis
- Cornerstone for further research

Acknowledgments

- Supervisors
 - Dr Kiro Petrovski
 - Dr Farhid Hemmatzadeh
 - Prof Darren Trott
- Farm owners and staff
- South East Vets
 - > Andrew Hoare

References

- 1- Aebi, M, Bodmer, M, Frey, J & pilo, p 2012, 'Herd specific strains of Mycoplasma bovis in outbreaks of Mycoplasma mastitis and pneumonia', Veterinary Microbiology, vol. 157, pp.363-368.
- 2- Amram, E, Freed M, Khateb, N, Miknla, I, Blum, S, Spergser, J, Sharir, B, Ozeri, R, Harrus, S & Lysnyansky, I. Year 'Multiple locus variable number tandem repeat analysis of *Mycoplasma bovis* isolated from local and imported cattle', *The veterinary Journal*, vol. 197, pp. 286-290.
- > 3- Boonyayatra, S, Fox, LK, Bosser, TE, Sawant, A, Gay, M & Raviv, Z 2012,'A PCR assay and PCR-restriction fragment length polymorphism combination identifying the 3 primary *Mycoplasma* species causing mastitis', *Journal of Dairy Science*, vol. 95, pp. 169-205.
- 4- Maunsell, FP, Woolums, AR, Francoz, D, Rosenbusch, RF, Step, DL, Wilson, DJ & Janzen, ED 2011, 'Mycoplasma bovis Infection in Cattle', Journal of Veterinary Internal Medicine, vol. 25, pp. 722-783.
- 5- Morton, J Malmo, J, House, J & Mein, G 2014, 'Mycoplasma bovis in Australian dairy herds' Australian Veterinary Journal, vol. 92, pp. 231
- 6- Zadoks, RN, Middleton, JR, McDougall, s, Katholm, J, Schukken, YH 2011, 'Molecular Epidemiology of Mastitis pathogens of Dairy Cattle and comparative & elevance to Humans', Journal of the Mammary Gland Biology and Neoplasia, vol. 01, No. 16, pp.357-372.
- 7- Boonyayatra, S., L. K. Fox, T. E. Besser, A. Sawant, and J. M. Gay. 2010. Effects of storage methods on the recovery of Mycoplasma species from milk samples. Vet Microbiol 144(1-2):210-213.
- 8- Nicholas, R. A. and R. D. Ayling. 2003. Mycoplasma bovis: disease, diagnosis, and control. Res Vet Sci 74(2):105-112.

