Tentative Program
PROGRAM AT A GLANCE

Day 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-09:30</td>
<td>General Session</td>
</tr>
<tr>
<td>09:30-09:55</td>
<td>Inaugural Address</td>
</tr>
<tr>
<td>10:00-10:25</td>
<td>Keynote/Plenary Talk 1</td>
</tr>
<tr>
<td>10:25-10:50</td>
<td>Keynote/Plenary Talk 2</td>
</tr>
<tr>
<td>10:50-11:15</td>
<td>Keynote/Plenary Talk 3</td>
</tr>
</tbody>
</table>

Evening Sessions

- **Coffee/Tea Break 11:15-11:30 (Networking)**
 - 11:30-13:10: General surgery, Kidney Transplantation
 - **Lunch Break 13:10-13:50**
 - 13.50-16:10: General surgery, Kidney Transplantation

Coffee/Tea Break 16.10-16.25 (Networking)

Day 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1</th>
<th>Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-11:15</td>
<td>Hair Transplantation</td>
<td>Lung Transplantation</td>
</tr>
<tr>
<td></td>
<td>Bone Marrow Transplantation</td>
<td>Heart Transplantation</td>
</tr>
<tr>
<td></td>
<td>Coffee/Tea Break 11:15-11:30 (Networking)</td>
<td></td>
</tr>
<tr>
<td>11:30-12:15</td>
<td>Liver Transplantation</td>
<td></td>
</tr>
<tr>
<td>12:15-13:10</td>
<td>Blood Transfusion</td>
<td></td>
</tr>
</tbody>
</table>

Lunch Break 13.10-13.50

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.50-16.10</td>
<td>Skin and Face Surgery</td>
</tr>
<tr>
<td>Coffee/Tea Break 16.10-16.25 (Networking)</td>
<td></td>
</tr>
<tr>
<td>16.25-18.30</td>
<td>Clinical studies- Transplantation</td>
</tr>
</tbody>
</table>

Awards & Closing Ceremony

NOTE: Program Schedule is subject to change with final allotment of the speaker slots
Millions of men and women suffer from hair loss. Male- and female-pattern baldness can be a very stressful and debilitating condition. Nearly universally it negatively affects our self-image, and also negatively affects how others perceive us. Hair Restoration surgery is a surgical solution to hair loss, and one that has undergone a tremendous amount of change and refinement in just the last 15 years. The “pluggy” and “doll’s hair” appearance of hair restoration surgery patients is long gone, as it is now a follicle-by-follicle transplant. The resultant linear scarring on the back and sides of the scalp (e.g.: the donor area) is a telltale sign that a surgical hair restoration procedure has taken place, with all the associated social stigma. A method of extracting hair from the donor area without using scalpels but instead with tiny circular punches was developed in the late 1990s. This technique is called Follicular Unit Extraction (e.g.: FUE) and is a specialized form of hair restoration surgery that is growing in popularity around the world. This is a preferred surgical option for those who desire a hair restoration surgery but do not want the telltale linear scar on the scalp. I have been performing FUE surgery since 2003, and I will review my 13 year experience with the technique. An emphasis will be placed on surgical robotic technology, its advantages and limitations, and how it is transforming the patient experience, and enhancing cosmetic outcomes.
Efficacy of Laparoscopically assisted high ligation of patent processus vaginalis in Children

Hisham Hussein Mohamed Ahmed
Benha University School of Medicine, Qalyubia, Egypt

Introduction
Laparoscopic hernia repairs have been proven to be efficient and safe for children, despite the slightly higher recurrence rate compared with the classic surgical repair. They have the advantage of easy and precise identification of the type of defect and its correction, both in ipsilateral and contralateral sides.

Objectives
The objectives of this study were to evaluate the efficacy, safety and outcome of the Laparoscopically assisted piecemeal high ligation of a patent processus vaginalis (PPV) in children.

Methods
A total of 40 children were enrolled into this prospective study; they were aged ≥6 months and had an inguinal hernia. The peritoneal cavity, including the contralateral side, was inspected for the possibility of bilateral hernias using a 3-mm 30° telescope. Another 3-mm port was introduced through the same infra-umbilical incision. The hernia was manually reduced or with the aid of a working infra-umbilical grasper. A prolene or vicryl 2/0 or 3/0 suture on a curved semicircle round-bodied taper-ended 25–30 mm needle was introduced through a very small inguinal skin-crease incision. It was passed through the abdominal wall layers to the peritoneum and was manipulated by the laparoscopic grasper to pick up the peritoneum in piecemeal all around the internal ring. The needle was then pushed to the outside near to the entrance site, thus forming a semicircle around the internal ring. The suture was then tied and the knot was subcutaneously buried.

The primary outcome of the procedure was the incidence of intraoperative diagnosis and surgical repair of contralateral hernias in pre-operatively diagnosed unilateral cases. The secondary outcomes were defined as the incidence of complications and hernia recurrence.
Living kidney donation was revolutionized in 1996, when the first laparoscopic donor nephrectomy was performed. With over 100,000 patients currently awaiting a kidney transplant in the United States alone, the need to increase the kidney donor pool is of the utmost importance. The number of living kidney transplants significantly rose shortly after laparoscopic donor nephrectomy gained acceptance, and reached its peak in 2004. In the past 5 years, however, a slow decline in living kidney donation has occurred. The minimally invasive approach towards donor nephrectomy has undergone steady improvement over the last 15 years. Laparoscopic donor nephrectomy has become the gold standard procedure, and multiple large series have demonstrated excellent donor safety and recipient outcomes. Recent innovations include robotic-assisted procedures, retroperitoneal approach, and transvaginal extraction. Furthermore, the intraoperative management of living kidney donors has undergone changes, with volume loading, diuretic use, anticoagulation, and pain control regimens all being studied. Finally, data has emerged to complement the predominantly short-term outcomes published on living kidney donors, with a greater understanding of long-term effects after kidney donation.
Advanced lung disease (ALD) that requires lung transplantation (LTX) is frequently associated with pulmonary hypertension (PH). Whether the presence of PH significantly affects the outcomes following single-lung transplantation (SLT) remains controversial. Therefore, we retrospectively examined the outcomes of 279 consecutive SLT recipients transplanted at our center, and the patients were split into four groups based on their mean pulmonary artery pressure values. Outcomes, including long-term survival and primary graft dysfunction, did not differ significantly for patients with versus without PH, even when PH was severe. We suggest that SLT can be performed safely in patients with ALD-associated PH thereby increasing the impact of donors on the available organ pool.
Current Solutions for Long-Segment Tracheal Reconstruction

Ahmed A. Abouarab
University of Alabama at Birmingham, USA

This article is a continuation of previous reviews about the appropriate method for long-segment tracheal reconstruction. We attempted to cover the most recent, successful and promising results of the different solutions for reconstruction that are rather innovative and suitable for imminent clinical application. Latest efforts to minimize the limitations associated with each method have been covered as well. In summary, autologous and allogenic tissue reconstruction of the trachea have been successful methods for reconstruction experimentally and clinically. Autologous tissues were best utilized clinically to enhance revascularization, whether as a definitive airway or as an adjunct to allografts or tissue engineered trachea. Allogenic tissue transplantation are, currently, the most suitable for clinical application, especially after elimination of the need for immunosuppressive therapy with unlimited supply of tissues. Similar results have been reported in many studies that used tissue engineered trachea. However, clinical application of this method was limited to use as a salvage treatment in a few studies with promising results. These results still need to be solidified by further clinical and long term follow up reports. Combining different methods of reconstruction was often required to establish a physiological rather than an anatomical trachea and have shown superior outcomes.
Hand assisted laparoscopic surgery is an updated highly advanced version of laparoscopic technique. Such techniques bridge the gap between traditional surgery and total laparoscopic surgery. [1] Introduction of the hand intracorporeally enhanced the degree of freedom, hence, a remarkable degree of precision and safety in task performance. [2] Clinical and experimental studies confirmed safe use of the hand with insufflation pressure enhancing dexterity as well as a steep learning curve. [3] Therefore, the author made an overview analysis to the factors related to safety; efficiency; dexterity; instrumentation and cost-effectiveness for the use of hand assisted laparoscopic surgery; with a particular emphasis on Live donor nephrectomy.

Prospective Studies made by Kolvenbach R [1995] on the use of hand assisted laparoscopic surgery in aortic aneurysm repair proved high degree of safety and efficiency as well as cost effectiveness. [4] Several studies highlighted a multitude of factors significantly contributing into a high degree of precision and task performance; which reflected on uneventful enhanced recovery programme. [5]

There are various hand port devices of which the pros and cons for each port will be discussed in details. [6] Several studies; in particular, the author’s experimental studies confirmed that optimum safe insufflation pressure would be 10 mm Hg with no leak from the hand port and optimum dexterity and task performance. [7]

Hand assisted laparoscopic surgery is a safe and efficient technique. It significantly enhances concept of Enhanced Recovery programme. Raising public awareness can provide a high impact in enhancing live donor nephrectomy; hence reducing the inexorable Renal Transplant waiting list for patients with end stage renal disease.
Islet transplantation: Input of biomaterials for islet survival

Elisa Maillard
University of Strasbourg, France

Islet transplantation is a promising and minimally invasive therapy to restore normoglycaemia in brittle type 1 diabetic patients. However, the procedure is pancreas consuming since 2 to 3 pancreases are needed for a single patient. Therefore, efforts in research are focusing on improvement of islet survival during the process to decrease pancreas requirement. The stressful event of islet/exocrine separation deprives cells from extracellular matrix contact and oxygen supply, which are two of the major reasons of the loss of approximately 60% of islets.

Interest had risen over the last couple of years in biomaterials in islet transplantation regarding transplantation but also for the culture steps. The uses of biomaterials to create an artificial environment for islets post isolation increase their survival and improve transplantation outcome. In the same way, oxygen provider arouses enthusiasm of the community, and numerous teams tested the beneficial effect of oxygen supply from the pancreas retrieval to islet implantation step.

The combination of both agents showed a real benefit for islet viability and function in vitro, providing more robust islet for sustaining the transplantation event. In vivo study highlighted several problems with transplantation sites, the liver. Indeed, depending upon the material used the inflammatory reaction is triggered. Therefore, alternative sites are today investigated, with in particular the omental pouch which gives the opportunity to keep matrices post-implantation.
Impact of hyperglycemia on islets revascularization deficiency post intraportale transplantation

Allan Langlois
Strasbourg University, France

Vascular Endothelial Growth Factor (VEGF)–VEGFR receptor 2 (VEGFR2) signaling pathway is the key regulator of islet revascularization post graft. However, in diabetics, studies suggest that this axis activation is impaired in tissues like the lung, due to a decrease of VEGFR2 expression. The aim of this work was to compare VEGFR2 expression in the liver between diabetic and control rats and to understand the impact of hyperglycemia on its expression. The study was realized on healthy and diabetic Wistar rats induced by intraperitoneal injection of streptozotocine (100mg/kg). Diabetic rats were treated or not with Insuplant® administered using a subcutaneous osmotic-pump (2UI/day). After 6 weeks, rats were sacrificed, plasma and livers recovered. VEFGR2 expression was measured by western blotting, glycaemia using glucometer, c-peptide by ELISA kit and oxidative stress (OS) using DHE staining.

VEGFR2 expression is reduced in the liver of untreated diabetic rats (0.09 ±0.02 vs control: 0.40±0.03 VEGFR2/β-actin protein expression; p<0.001). Moreover, insulin improved this expression (diabetics+insulin: 0.22±0.06 VEGFR2/β-actin protein expression; p<0.05) but to a lower level than control. Then, OS is increased in untreated diabetics (141.5±8.7% of staining vs control; p<0.05). With insulin, OS returned to control level and was less important than diabetic untreated rats (p=0.07 vs untreated diabetics).

As the liver is the principal site of islet transplantation, VEGFR2 underexpression could explain the delay of graft revascularization. Moreover, hyperglycemia inducing OS could be responsible of the decreasing of VEGFR2 expression. Finally, we have to confirm this role and to develop anti-oxidative strategies to stimulate VEGFR2 expression.
Should obese patients be considered for renal transplantation?

Laura Horne
University of Liverpool, UK

Background: There is an increasing prevalence of obesity and consequently increasingly restricted access to renal transplantation amongst end stage renal disease (ESRD) patients whose body mass index (BMI) exceeds the centre specified limit. These limits are set on the basis of an increased risk of complications seen in obese patients. Despite these complications, obese patients receiving transplantation experience a survival benefit. To access transplantation obese patients must reduce their BMI to meet transplant suitability criteria. However in patients undergoing haemodialysis (an alternative treatment for ESRD) an increased BMI is advantageous offering a better prognosis to obese patients than non-obese patients; this is the basis of the obesity paradox.

Methodology: A literature search using Medline and Scopus was performed with searches limited to English language and from 2011 onwards. Outcomes in obese patients undergoing renal transplantation were reviewed.

Results: Obese patients having live donor renal transplantation appear to have outcomes equivalent to the total population having transplantation from all donor types. The obesity paradox may dis-incentivise pre-transplant weight loss in this high risk group.

Conclusions: Each candidate for renal transplantation must be reviewed individually and consideration of their body composition, using a measure of abdominal obesity, rather than BMI alone may aid in selecting suitable candidates for renal transplantation. In the future obesity should be more accurately assessed and viewed as a chronic disease with outcomes equal to those in non-obese patients, rather than an absolute contraindication to transplantation.
Recent proteomic approach allows us to target on specific molecules underlying the common mechanism between experimental and clinical liver allograft tolerance. A novel insight has been gained since we found that post-transplant autoimmune responses with high titer of anti-nuclear antibodies against histone H1 and high mobility group box 1 (HMGB1) play an important role in the rejection and tolerance in both experimental and clinical settings. Our previous studies demonstrated that either treatment of recipient rats with commercially available anti-histone H1 polyclonal antibody (Ab) or immunization with calf thymus histone H1 could prolong allograft survival in heterotopic heart transplantation. We have also reported that the induction of autoimmune hepatitis during acute rejection could prolong the liver allograft survival of rats in an acute rejector liver-transplant model. Immunologically, the blockade of histone H1 modulated dendritic cells toward tolerogenic status, decreased the cytotoxicity of lymphokine activated killer and natural killer cells, and induced CD4+CD25+ regulatory T-cells. For further analysis of this mechanism, we generated an immunosuppressive histone H1 monoclonal Ab against histone H1 (16G9 mAb) and determined one peptide (designated SSV) that binds directly to 16G9 mAb. The binding of SSV to 16G9 mAb or serum of both tolerogeneic OLT rats and clinical drug-free OLT patients, was inhibited by histone H1. Furthermore, SSV mAb or immunization of mice with SSV induced immunosuppression in serum, suggesting that SSV was an epitope responsible for the immunosuppressive activity of 16G9 mAb. SSV mAb and peptide SSV will allow us to establish a novel diagnostic and therapeutic strategy in transplantation. This presentation reviews our work exploring how the autoimmune response against nuclear proteins is involved in transplantation immunology.
TOURIST ATTRACTIONS

Centennial Olympic Park

Cobb Energy Performing Arts Centre

Georgia Aquarium

Georgia World Congress Center

High Museum of Art

World of Coca-Cola
GLIMPSES OF PREVIOUS SERIES