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Abstract: (Limit 600 words) 

Alexander disease (AxD) is a fatal neurodegenerative disorder caused by mutations in glial fibrillary acidic protein 

(GFAP), which supports the structural integrity of astrocytes. Over 70 GFAP missense mutations cause AxD, but the 

mechanism linking different mutations to disease-relevant phenotypes remains unknown. We used AxD patient brain 

tissue and induced pluripotent stem cell (iPSC)-derived astrocytes to investigate the hypothesis that AxD-causing 

mutations perturb key post-translational modifications (PTMs) on GFAP. Our findings reveal selective phosphorylation 

of GFAP-Ser13 in patients who died young, independently of the mutation they carried. AxD iPSC-astrocytes 

accumulated pSer13-GFAP in cytoplasmic aggregates within deep nuclear invaginations, resembling the hallmark 

Rosenthal fibers observed in vivo. Ser13 phosphorylation facilitated GFAP aggregation and was associated with 

increased GFAP proteolysis by caspase-6. Furthermore, caspase-6 was selectively expressed in young AxD patients, 

and correlated with the presence of cleaved GFAP. We reveal a novel PTM signature linking different GFAP mutations 

in infantile AxD. All Alexander disease patients develop GFAP aggregates, but the type of mutation they have in the 

gene for GFAP does not predict how their illness will progress. The age of onset of disease, for example, can vary 

between less than one year old to more than 70 years old. Battaglia et al. sought to understand how GFAP aggregates 

form in the cells of Alexander disease patients. One way that GFAP can be altered in the cell is by a process called 

phosphorylation. Enzymes called kinases add phosphate groups to GFAP, which can regulate the protein’s activity, 

stability and interactions with other proteins.Battaglia et al. found high levels of phosphorylation at one specific site in 

the GFAP protein in people who had very early onset of Alexander disease. This phosphorylation was not related to 

any particular mutation in the gene for GFAP. An added phosphate group at this location in the protein made GFAP 

more likely to be broken into two pieces by an enzyme called caspase-6. One of the breakdown products is already 

known to play a role in aggregation. Young patients with Alexander disease had high levels of GFAP breakdown 

products and caspase-6. The phosphorylated protein and this enzyme were found to accumulate in astrocyte aggregates. 
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Importance of Research: (Limit 200 words) 
Considerable progress has been made toward understanding the mechanistic roles of specific nutrients in the function of leukocytes of 

rodent models and in human cell lines. In particular, the discovery of cell signaling networks by which nutrients regulate the 

differentiation and phenotype of regulatory leukocytes has been an important development. The translation of these mechanistic results in 

ways that improve outcomes in human diseases has been limited. Aside from the obvious inability to control the experimental 

environment, the complex nutritional context of at-risk human populations presents a daunting challenge. For example, although research 

with rodents typically examines deficiencies of a single nutrient in a diet in which all other nutrient amounts are optimal, human diets 

may commonly be lacking in multiple nutrients and simultaneously have certain nutrient excesses. Consequently, a key research priority 

is the need to examine interactions between essential nutrients with the immune and related systems to determine if they have additive, 

synergistic, facilitating, or unpredictable effects relative to an individual’s nutritional status.In human populations, genetic and epigenetic 

differences likely account for important variations in the response of the immune system to nutrient fortification. Reliance on inbred 

mouse species housed in highly controlled environments may not be the most relevant model for understanding the implication of these 

genetic interactions in humans. New approaches for model systems that more closely duplicate the dietary, genetic, and hygienic realities 

of human populations should be considered. 
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